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Abstract— This paper addresses the issue of video-based action
recognition by exploiting an advanced multistream convolutional
neural network (CNN) to fully use semantics-derived multiple
modalities in both spatial (appearance) and temporal (motion)
domains, since the performance of the CNN-based action recog-
nition methods heavily relates to two factors: semantic visual cues
and the network architecture. Our work consists of two major
parts. First, to extract useful human-related semantics accurately,
we propose a novel spatiotemporal saliency-based video object
segmentation (STS) model. By fusing different distinctive saliency
maps, which are computed according to object signatures of
complementary object detection approaches, a refined STS maps
can be obtained. In this way, various challenges in the realistic
video can be handled jointly. Based on the estimated saliency
maps, an energy function is constructed to segment two semantic
cues: the actor and one distinctive acting part of the actor.
Second, we modify the architecture of the two-stream network
(TS-Net) to design a multistream network that consists of three
TS-Nets with respect to the extracted semantics, which is able to
use deeper abstract visual features of multimodalities in multi-
scale spatiotemporally. Importantly, the performance of action
recognition is significantly boosted when integrating the captured
human-related semantics into our framework. Experiments on
four public benchmarks—JHMDB, HMDB51, UCF-Sports, and
UCF101—demonstrate that the proposed method outperforms
the state-of-the-art algorithms.

Index Terms— Action recognition, multi-stream CNN, spa-
tiotemporal saliency estimation, video object detection, semantic
cues, multi-modalities.
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I. INTRODUCTION

W ITH the rapid growth of video data, there is an urgent
need for techniques to analyze the video contents

automatically [2], [3]. Action recognition, which aims at
enabling machines to recognize human actions in real-world
videos efficiently and accurately, has drawn a lot of attention in
both the academia and industry [4]–[8]. Despite that significant
progresses have been achieved recently, action recognition is
still a challenging problem. Intra-class and inter-class varia-
tions of humans in appearance and motion are the main diffi-
culties. Moreover, varying environments of the actions further
increase the complexity of human and motion localization [3].
Actions are characterized by the temporal evolution of visual
appearance governed by motion. While spatial cues have been
well studied in many current methods, resulting in effective
features, there is still a need for developing valid methods
for employing temporal cues and their variations in action
recognition.

Recently, Convolutional Neural Networks (CNNs), which
are able to learn discriminative features from raw data auto-
matically, have shown remarkable success in image analysis,
such as image classification [9], object detection [10], [11],
human face recognition, and event classification. For action
recognition in videos, however, deep learning methods have
yet to demonstrate its effectiveness when being compared with
traditional hand-crafted approaches [12].

There are two main factors that limit the performance of
CNN-based video action recognition. First, compared to still
images, videos contain complex conditions such as intra-class
variations caused by occlusion and/or change in viewpoint
and/or background [26] temporally, and long-range temporal
structure is significant to understand the dynamics in action
videos [4]. Current CNN architectures are still unable to make
full use of the temporal features. The spatiotemporal charac-
teristics of videos call for more efficient network architec-
tures [35]. E.g., a desirable architecture should take advantage
of both the temporal (motion) and the spatial (appearance)
features with multi-modalities. The second limitation of CNNs
concerns the semantic nature of videos. Videos contain rich
semantic information, and an action is often related to many
semantic visual cues, like the scene, human, and human body
parts in interaction [7], [19]. While detecting semantics from
videos is difficult, figuring out the correspondences between
action types and semantic features is even more difficult. Until
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now, only a few works have investigated how to effective
extract semantic cues and what is the role of semantics in
video-based action recognition.

These issues motivate us to improve the performance of
action recognition in videos with deep learning in two aspects,
where the successful two-stream network (TS-Net) [5] is
adopted as the baseline in this work: 1) Exploiting useful
human-related semantic cues; 2) Improving the architecture of
the TS-Net and integrating semantics-derived multi-modalities
spatiotemporally into our framework.

Actions are defined as intentional bodily movement of bio-
logical agents [13]. This definition reveals that the success of
action recognition depends on two visual cues: appearance and
motion, and one subject: biological agent (i.e. actor). Inspired
by this characteristic, Simonyan and Zisserman [5] proposed
a TS-Net, where two CNNs are trained to separately extract
appearance and motion information explicitly. In short, one
CNN is used to tackle video frames (spatial stream) to capture
appearance features for locating a person, and another CNN is
applied to process the stacked optical flows (motion stream)
to obtain features for detecting bodily movements (action).
Late fusion was employed to integrate the softmax scores
of two CNNs either by averaging or with a linear classifier.
TS-Net faces some challenges: 1) It is unable to represent what
moves where, and how the spatial cue and temporal cue evolve
over time. To overcome these drawbacks, we introduce a new
spatiotemporal fusion architecture upon the TS-Net [6]. 2) The
network architecture used in TS-Net is shallow [23]. Recent
works demonstrate that deeper CNN architectures boost the
performance of action recognition [4], [18]. We test different
deeper CNNs for the spatial stream and the temporal stream
separately to find more suitable networks. 3) Only two simple
modalities (full RBG image and optical flow) are not sufficient
to deal with some complicated realistic challenges. We exploit
other modalities, which are based on our extracted human-
related semantics, to assist action recognition. 4) The TS-Net
considers action recognition on a single scale. In realistic
videos, action often varies in scales. We extend the TS-Net
to capture better features in multi-scale.

Semantic cues, such as scene context [5], hand regions [20],
human pose [8], human body [3], [19], and interacting
objects [21], are beneficial for video-based action recogni-
tion [7]. Especially, the human-related proposals show their
attractive advantage in improving the performance of action
recognition. However, the state of the art methods [7], [19],
[21] simply introduce the image-based object detection tech-
niques, e.g., R-CNN [10], Faster R-CNN [11], selective
search [22], to capture object candidates. In fact, they are
not suited to be directly applied to detect objects in videos.
Besides, these methods produce too many object proposals, but
only some of them are useful for recognizing human actions,
as one action is usually strongly related to the movement of
the actor. In other words, the human body and his/her motion
salient part are the most important semantic cues for action
recognition.

Towards addressing the above-mentioned two problems,
we propose a spatiotemporal saliency based video object
segmentation (STS-VOS) model to extract two semantic cues

in videos – actor, and its most motion salient body part (we
call it acting part). Unlike the previous salient video object
detection approaches focusing on exploiting or incorporating
different saliency cues, we aim to capture object signatures
which can be estimated by any kinds of complementary video
object segmentation methods to assist compute more accu-
rate spatiotemporal saliency maps (SSM) [1]. Three distinc-
tive saliency maps, which are obtained from an appearance-
dominated approach, a motion-dominated technique, and a
deep feature-based method, are incorporated to attain a refined
SSM according to an adaptive fusion scheme. At last, based
on the computed SSM, an energy minimization framework
is designed to segment coherent human body and its most
distinctive acting part in a video spatially and temporally.

After detecting the actor and the actor’s acting part, together
with the full image, we integrate these three types of semantic
cues into our advanced multi-stream network (MS-Net). In this
way, the segment-level local information, the image-level spa-
tial global scene information, and the video-level spatiotempo-
ral global information can be well fused to support each other.
Due to the detected actor and its acting part, our network is
able to localize and recognize the action, and is effective to
answer whether there is an action, if so where is the action and
performed by which actor (see Figure 2). In addition, outliers,
like the background clutters outside these captured regions are
significantly suppressed. The scene content is also important
as it supplies location-independent cues. E.g., differentiating
“tennis game” and “badminton game” demands high-level
representations to simulate global scene statistics.

This work makes three main contributions:

• We demonstrate that exploiting spatiotemporal consistent
human-related semantics, i.e., the actor and its acting part,
is effective to improve the performance of video-based
action recognition, especially for the action which plays
by one actor.

• To capture the actor and its acting part, we present a
novel STS-VOS method to detect objects in videos. The
complementary object signatures from different object
segmentation methods are explicitly used to compute
spatiotemporal saliency maps to guide salient video
object segmentation via an energy function for the first
time.

• We design an advanced semantic cues enhanced spa-
tiotemporal MS-Net to improve the TS-Net in three
aspects: exploiting semantics to help formulate valuable
input modalities; constructing a multi-scale strategy to
extract features from these modalities in different scales;
selecting suitable deep network for the spatial stream and
the temporal stream separately.

• We conduct experiments on four well-known bench-
marks: JHMDB, HMDB51, UCF-Sports and UCF101,
on which our method achieves superior performance.

II. RELATED WORK

Numerous studies have been carried out on action
recognition in videos. It is beyond the scope of this paper to
introduce all of them. Hence, we pay attention to the related
works in three categories: 1) semantic cues extraction in videos
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in terms of saliency information, 2) TS-Net related algorithms
for video processing, and 3) exploiting semantics for TS-Net
related methods to recognize human actions in videos.

A. Semantic Cues Extraction in Videos

Semantic cues, especially human and the motion salient
regions of human, are very useful for video-based action
recognition. Since motion is the most significant cue, a lot
of work has considered this feature. 1) Salient motion
detection. Wixson [30] proposed to extract salient motion
based on the intermediate-stage vision integration of optical
flow. 2) Combining appearance and motion saliency cues.
Zhai and Shah [31] fused spatial and temporal saliency maps
dynamically to construct a spatiotemporal saliency map.
Zhong et al. [32] presented a video saliency detection algo-
rithm to extract attended regions. One attention model is
constructed by fusing spatial and temporal saliency maps.
3) Spatiotemporal consistency optimization. The aforemen-
tioned two types of techniques treat video frames one-by-one,
without considering the inherent spatiotemporal consistent
feature of the video saliency maps. Wang et al. [34] designed
an energy function to segment object spatiotemporally con-
sistent by using the obtained SSM. Tu et al. [1] proposed a
spatiotemporal saliency method to extract salient objects in
videos. By fusing two distinctive saliency maps, which are
calculated from two types of complementary object signatures,
a refined spatiotemporal video saliency maps are obtained.
This method is robust under multiple complex conditions.
How to combine different semantics optimally is a challenging
but unsolved problem [14], more contributions need to be
conducted in this domain.

B. TS-Net Related Algorithms for Video Processing
Since Simonyan and Zisserman [5] proposed a TS-Net to

extract both appearance and motion features for video-based
action recognition, the TS-Net has been extended and modified
to handle many video tasks. To overcome the drawback of
TS-Net which is unable to model long-range temporal
structure, Wang et al. [4] proposed a temporal segment
network (TSN) to extract long-term temporal feature for action
recognition. Wu et al. [25] applied the Long Short Term
Memory (LSTM) [36] to explore long-term temporal dynamics
in the visual channel. Varol et al. [15] applied neural
networks with long-term temporal convolutions to learn video
representations. Fernando et al. [16] proposed a rank pooling
method, which learns a pooling function via ranking machines,
to capture the video-wide temporal evolution of a video.

How to optimally fuse different streams is another interest-
ing topic. Wu et al. [25] presented a multi-stream framework to
capture multimodal features for video classification. A multi-
stream multi-class fusion approach was designed to learn the
optimal fusion weights of each class with regards the class-
specific preferences. Yang et al. [26] presented a multilayer
and multimodal fusion architecture for classification in videos.
They employed four complementary modalities: 2D-CNN on
a single RGB frame and flow image, and 3D-CNN on a short
clip of RGB frames and flow images. Feichtenhofer et al. [6]
proposed a spatiotemporal architecture for TS-Net to better

Fig. 1. The proposed MS-Net: consisting of three TS-Nets (i.e. TS-Net1,
TS-Net2 and TS-Net3), with respect to the original 2 modalities (i.e. Full
RGB and Flow) and our extra extracted semantics derived 8 modalities
(i.e. AR RGB and Flow, UH RGB and Flow, LH RGB and Flow, AP RGB
and Flow).

extract features for action recognition by proposing a 3D
convolutional fusion followed by 3D pooling at the last
convolutional layer.

C. Exploiting Semantics for TS-Net to Recognize
Human Action

Cheron et al. [8] applied human pose to learn features for
video action recognition under the TS-Net. However, pose-
estimators should be avoided for action recognition till pose
estimation becomes accurate enough [29]. Singh et al. [19]
exploited a MSB-RNN for fine-grained action detection in
videos. Based on the detected bounding box of the per-
son according to a simple state-based tracker, two person-
centric streams are obtained in spatial and temporal domains.
The tracker performs poorly in capturing humans in videos.
Tu et al. [3] improved the B-RPCA [37] to capture the
actor to assist action recognition, however, the IB-RPCA
method of [3] is not good at detecting human if the back-
ground is moving or there are multiple moving objects.
Gkioxari and Malik [21] employed selective search to produce
approximately 2K regions in each frame, and remove the
proposals that are void of motion according to a motion salient
measure. However, in this method, not only some unnecessary
regions are utilized but also the necessary human body cannot
be precisely localized. To address the overfitting issue due
to insufficient training data, Shu et al. [17] proposed a novel
architecture of DTNs which is able to transfer cross-domain
information from text to image. A semantic-intensive image
feature representation is formed to enhance the performance
of image classification tasks.

The most related work to us is [7], which integrates var-
ious semantic cues (i.e. object proposals) detected by Faster
R-CNN into the TS-Net for action recognition. A late fusion
(Sum fusion) was adopted to combine the scores computed



1426 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 5, MAY 2019

Fig. 2. The detected actor and the actor’s acting part on UCF101 by the proposed STS-VOS method. First row and second row are the extracted two types
of semantic cues on the RGB image and the flow image respectively.

from these semantic channels for final action prediction.
This method has some drawbacks. First, the Faster R-CNN
is not good at detecting spatiotemporal consistent object
(i.e. object-tube) in videos. Second, too many irrelevant
objects or background outliers are captured, and most of
them are directly treated as semantic cues to the network.
Third, the architecture of the TS-Net is too simple to extract
good features when the videos contain challenging conditions.
Finally, they ignore the fact that motion salient acting part
plays a significant role for action recognition. To handle these
defects, we design an effective semantics involved MS-Net in
this work.

III. THE PROPOSED APPROACH

In this section, we describe the proposed method in detail.
First, we present a STS-VOS approach to extract semantics:
the actor and its acting part (see Figure 2). Second, we design
an advanced MS-Net which contains three TS-Nets to learn
features for action recognition. In particular, other than two
modalities, i.e. the full RBG image and optical flow [43],
[44] (also called scene), those were employed in the original
TS-Net, we exploit additional 8 modalities: 1) our detected
actor-region (AR) RBG image, 2) upper half (UH) of AR
RBG image, 3) lower half (LH) of AR RBG image, 4) acting
part (AP) RGB image, 5) AR optical flow, 6) UH of AR
optical flow, 7) LH of AR optical flow, and 8) AP optical flow.
Besides, we extend these modalities to multi-scale to learn
more representative deep descriptors (see Figure 4). Finally,
a spatiotemporal convolutional fusion (ST-CF) strategy [6] is
introduced to merge distinctive features of spatial stream and
temporal stream at the last convolutional layer to full use
the spatiotemporal video information (see Figure 5). Figure 1
outlines the general framework schematically.

A. Semantic Cues Detection According to STS-VOS

A video usually shows the movements and interactions of
objects over time in some scenarios. To recognize human
actions in videos, we decompose a video into three parts
– scene, actor and the actor’s acting part, to capture visual
features. How to effectively extract the human and its acting
part is a significantly challenging issue in video-based action
recognition. A STS-VOS method is proposed to treat with
this problem. The key idea of our STS-VOS method contains
two main phases: (1) Introducing the idea of [1] to calculate
SSM, which uses some object signatures that can be captured
by any effective video-based object segmentation algorithms,
allowing mutually complementary channels of saliency maps

to be computed, combing these saliency maps to obtain a
refined SSM via an adaptive fusion; (2) The SSM is applied
to guide the segmentation of both the actor and its acting part
in terms of an our designed energy function.

1) Extracting Object Signatures: We introduce three video
object segmentation methods to obtain three types of object
signatures: the appearance-dominated IB-RPCA method [1],
the motion-dominated IFOS approach [1], and the CNN-
related object flow (ObjFlow) algorithm [40]. To enhance the
performance on detecting object signatures, we improve them
to boost their effectiveness for our purpose.

Object Signature 1 (Object Extraction by IB-RPCA) IB-
RPCA: The B-RPCA method [37] is able to detect fore-
ground moving objects in complicated scenes with various
challenges simultaneously, e.g., background motions, illumina-
tion changes, and camouflage. The B-RPCA method contains
three major steps: 1) First-pass RPCA; 2) Motion Saliency
Estimation (MSE); 3) Second-pass RPCA. To further enhance
the performance of the IB-RPCA method of [1], we modify
the second step. To suppress the wrongly identified non-
stationary motions, we add the velocity angle constraint of [3]
to the motion direction consistency measure. In addition,
we use the velocity angle constraint to calculate the trajectory.
Unlike [1] which sets the trajectory length to 5 frames, we try
to track a point as long as possible, however, if the angle
difference between frame j and its adjacent frame j + 1
is larger than 45◦ (we set it experimentally), we stop to
compute the trajectory. Because, normally, the object points
move temporally smoothing and consistent, this measure is
useful to reduce the trajectory of the background moving noise
which has random motion direction.

Object Signature 2 (Object Extraction by IFOS): The
FOS [38] can automatically segment video objects effi-
ciently in unconstrained setting, including fast moving
background, non-rigid deformations, objects with arbitrary
appearance and motion types. This algorithm contains two
primary steps: initial foreground estimation and foreground-
background labelling refinement. Tu et al. [1] designed an
improved LMBD (ILMBD) method [41] to compute motion
boundaries based on optical flow to boost the performance of
object detection in the first step. We employ the most recently
deep-leaning based optical flow method FlowNet 2.0 [42],
which is very efficient and effective, to compute optical flow.

Object Signature 3 (Object Extraction by ObjFlow):
Tsai et al. [40] proposed a method to regard video segmenta-
tion and optical flow computation in videos jointly. For video
segmentation, they exploited a principled, multi-scale and
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spatiotemporal graphical model. Both the CNN deep fea-
tures [45] and the appearance features are used. This method
can tackle various challenges, like cluttered backgrounds,
objects with deforming shapes and fast moving.

2) Computing Saliency Maps: After attaining three types
of foreground object signatures, we introduce the foreground
connectivity [46] to each channel to compute saliency maps
with two modifications:

Improvement 1 (Labeling Foreground Superpixels): Srivatsa
and Babu [46] computed the objectness maps according to the
objectness proposals which are extracted by the method of
BING [47]. Then, the foreground can be roughly obtained by
thresholding the objectness maps, and superpixels that are part
of the foreground are accordingly captured. Since the detected
foreground is coarse, the captured foreground superpixels are
not precise. In this work, much more accurate foreground
superpixels can be estimated based on our segmented object
signatures as follow:

F Pi ← POi > γ · PNi (1)

where Pi ∈ P represents a superpixel. PNi denotes the number
of pixels belong to a superpixel region R. POi is the number of
overlapped pixels between a superpixel region of Pi and our
detected foreground object signatures. γ is a constant parame-
ter ∈ [0, 1]. F Pi ∈ F P denotes a superpixel is distinguished
as the foreground. Generally, if more than half of a superpixel
locates on our detected foregrounds, the superpixel will be
labeled as the foreground. We set γ = 0.55 empirically same
as [1]. The SLIC algorithm [48] is used to abstract each video
frame into superpixels.

Improvement 2 (Foreground Connectivity): A robust
saliency measure called foreground connectivity is utilized
to assign saliency values based on superpixel connectivity
to the captured foreground. An undirected weighted graph
is constructed by using superpixels as nodes. All adjacent
superpixels in the image are connected by an edge and the
edge weight is set as the Euclidean distance between their
mean CIE-Lab values. The geodesic distance between any two
superpixels dgeo(Pi , Pj ) is computed as the accumulated edge
weights along their shortest distance on the graph [49]:

dgeo(Pi , Pj ) = min
P1=Pi ,P2,...,Pk=Pj

k−1�

n=1

d(Pn, Pn+1) (2)

The foreground connectivity of a superpixel Pi is defined:

FGC (Pi ) =
�N

k=1 d(Pi , Pk)× δ(Pk)�N
k=1 d(P, Pk)× (1− δ(Pk))

(3)

where δ(·) is 1 if a superpixel is identified as foreground
superpixel according to Eq. (1), and N is the total number
of superpixels. Same as [46], we also take the reciprocal of
FGC and apply it as the foreground weights w f g :

w f g (Pi ) = 1/FGC (4)

Eq. (4) calculates foreground weights for all superpixels.
Normally, the foreground weight of a superpixel should be
assigned to zero if it is not distinguished as foreground:

w f g(Pi ) = 0, ∀Pi /∈ F P (5)

At last, we adopt the saliency optimization method of [46],
which incorporates our foreground weights with the back-
ground measure of [49], to compute the final saliency maps.
Accordingly, a motion-dominated video saliency maps from
IFOS (we call it IFOS saliency maps), an appearance-
dominated saliency maps from IB-RPCA (we call it IB-RPCA
saliency maps), and a deep learning relevant saliency maps (we
call it ObjFlow saliency maps) are obtained.

3) Fusing Saliency Maps: The computed three types of
saliency maps complement each other. However, simply com-
bining them, e.g., taking the product [66] or average [67],
does not necessarily produce a better video saliency maps.
We exploit an adaptive fusion method which is implemented
in two steps (using the IFOS saliency maps and the IB-RPCA
saliency maps for explanation):

Step 1 (Segmenting Object Proposals): We apply adaptive
thresholding to roughly segment foreground objects in the
IFOS and IB-RPCA video saliency maps in each frame
according to the following measure:

FGm ← SM > graythresh(SM )

FGa ← SA > graythresh(SA) (6)

where SM represents the IFOS saliency map and SA denotes the
IB-RPCA saliency map, and graythresh is the Matlab built-in
function [50].

Step 2 (Saliency Maps Fusion): Based on FGm and FGa ,
we can get box regions for each of them, i.e., m B =
{m B1, . . . , m BM } and a B = {a B1, . . . , a BN }, and look for
overlapped regions between them. Firstly, for these detected
box regions in every frame, if any of its intersection-over-union
(IOU) score is higher than a threshold τ (we set τ = 0.75),
we select the larger region box between them and label them
as:

L B = B1L ∪ . . . BkL ∪ . . . BK L, (K ≤ min(M, N)) (7)

where BkL = max(a Bn, m Bm). Secondly, we find other
foreground pixels that are overlapped in other regions:

L P ← (FGm · FGa) > 0 (8)

The final foreground pixels are labeled as:

FG ← L B ∪ L P (9)

We fuse SM and SA guided by the foreground pixels FG to
obtain a spatiotemporal saliency map:

ST Sacy(i)=

⎧
⎪⎨

⎪⎩

SM (i) if i ∈ FG(i)&SM (i) > η

max(SM (i), SA (i)) if i ∈ FG(i)&SM (i) ≤ η

SM (i) · SA (i) if i /∈ FG(i)

(10)

where i is the pixel index, we set η = 0.8 to select the good
quality SM same as [33]. High quality motion saliency features
are more reliable than appearance saliency features in a video
since it is more robust to cluttered backgrounds.

In the same manner, we fuse the ObjFlow saliency maps
with the computed SSM ST Sacy of IFOS and IB-RPCA to get
a final refined spatiotemporal video saliency maps. Refer [1]
to see the idea of fusing saliency maps more.
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4) Segmenting Video Objects: Similar to [34] and [38],
we regard object segmentation in videos as a pixel labeling
problem with two labels (foreground and background). The
energy function of [34] is adopted to label L all the pixels:

F(L) =
�

t,i

U t
i (l

t
i )+ λ1

�

t,i

At
i (l

t
i )+ λ2

�

t,i

Łt
i (l

t
i )

+ λ3

�

(i, j )∈NS

V t
i, j (l

t
i , lt

j )+ λ4

�

(i, j )∈NT

W t
i, j (l

t
i , lt+1

j )

(11)

where (�×T → 	3) is a video sequence. xi ∈ x represents a
point in the image domain �, i and j are the discrete index of
the pixels. t is the frame index. lt

i ∈ {0, 1} denotes the binary
label of pixel xi . L = {lt

i }t of pixels from all frames denotes
a segmentation of a video. Ut , At and Łt are three unary
terms, V t and W t are two pairwise terms. In particular, Ut

is the saliency term which aims to evaluate the probability of
a pixel is foreground or background based on saptio-temporal
saliency maps calculated through our prior step. λ1, λ2, λ3,
and λ4 are the scalar parameters weight these terms. We set
them same as [34] in this work. For more detail, please refer
to [34, eq. (7)].

To encourage temporal consistency of foreground objects,
we exploit a temporal matching term to the saliency term Ut .
The updated saliency term �Ut is defined as:

�Ut = Ut + λm�m (12)

The matching term �m is expressed as:

�m(x)=
⎧
⎨

⎩

1

Nt

�
x

It (x)− It+1(x + wt,t+1(x))
1 if lt

i = 1

0 if lt
i = 0

(13)

Nt is the number of pixels in the video frame t. It is
the brightness of frame t. wt,t+1 represents the optical flow
between two adjacent frames It and It+1 computed by the
method [42].

By minimizing our updated energy function with graph-cuts,
object segmentation can be accurately achieved. To extract the
acting part of the actor, we reset our video saliency maps
STSacy with a self-adaptive threshold:

ST Sacy(xi) = 0,∀ST Sacy(xi ) < median(ST Sacy(x)) (14)

Finally, the MSM [3] is used to select the acting region where
motion is most distinct among the proposals.

B. Semantics Enhanced Multi-Modality MS-Net

Based on our extracted semantic cues, an advanced seman-
tic cues enhanced multi-modality spatiotemporal MS-Net is
designed for video action recognition.

1) CNN Architecture: Network architecture plays a cru-
cial role in the designing of high-performance CNN. The
CNN_M [23] model, which is trained on the ImageNet dataset
and used in TS-Net, is shallow (5 convolutional layers and
3 fully-connected layers). However, the concept of action in
videos is more complicated than the concept of object in

Fig. 3. The captured upper and lower half regions of the actor.

images, therefore, recognizing human action in videos requires
high-level abstraction and inference. The deeper networks
VGG16 (13 convolutional layers and 3 fully connected layers)
is used to design our network, as it contains high modeling
capacity and is able to extract more discriminative features at
higher layers.

2) Input Modalities: To obtain more powerful abstractions,
we exploit extra complementary modalities according to our
captured human-related semantics. These modalities boost the
discriminate capability of the proposed MS-Net to enable it to
extract diverse static and dynamic cues.

a) Full RGB image: where the global spatial scene fea-
tures are preserved. The TS-Net applies a random cropping to
make a 224 × 224 patch and horizontal flipping to augment
training samples. It is likely to choose regions near by the
image center and training loss descends quickly resulting in
overfitting. To address this issue, we introduce the corner
cropping approach of [4], where 4 corners and 1 image center
regions are cropped to augment the input to reduce overfitting.

b) Full optical flow: where the motion between video
frames is described. To construct the flow image, optical flow
is first calculated for each successive pair of frames according
to [42]. The x-flow component and the y-flow component are
rescaled to the range of [0, 255] by a linear transformation.
Values smaller than 0 and larger than 255 are truncated.
We adopt optical flow stacking with L = 10 as [5] and [6].

c) AR RBG image and flow image: where the appearance
information of the actor and the motion information due to
the movement of the actor can be learned. After detecting the
human by our STS-VOS method, we extract the bounding box
of the human in both the RGB image and its corresponding
flow image. By utilizing the AR, not only background noise is
reduced but also the extracted features strongly correspond to
the location of the actor. In this way, some actions can be easier
to recognize as location variation is removed. Besides, some
actions are location dependent. Since some scene shots are
captured by static cameras, the actions almost take place at the
same image position, e.g., “eat” and “drink” in HMDB51 [57],
“GolfSwing” and “Haircut” in UCF101 [56], etc.

d) UH/LH regions of AR RBG image and flow image:
where appearance and motion features in half region of the
human body are abstracted (see Figure 3). In contrast to [52]
which used the left/right/upper/lower half regions for object
detection, and Peng and Schmid [53] applied upper/lower half
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Fig. 4. Using scene (S) for explanation (on the TS-Net1) of multi-scale based data augmentation operation. Fusing multi-scale feature representations of
one input semantic cue to form the final feature representation in the spatial-stream (e.g., S RGB representation) and the temporal-stream (e.g., S Flow
representation) at the last convolutional layer (Conv5_3) of VGG16 model.

of the region proposal network (RPN) proposals for action
detection, we utilize UH/LH regions to recognize human
actions. Because for human actions, no matter the action is
complicated or simple, most of them are horizontal body
symmetry. Two benefits can be obtained with this operation:
First, the learned features are more robust with respect to
occlusions; Second, it is helpful to recognize the actions
that body part characteristics are dominated. E.g., “TaiChi”,
“GolfSwing” are easier to recognize with the upper half region
of the actor, while “climb stairs” with respect to the lower half
region of the actor.

e) AP RGB image and flow image: where the features
related to action in both spatial and temporal domain are
extracted. Features, which learned by this high-level semantic
cue, have received little attention till now. But the AP directly
supplies the action features and they are complementary to the
actor and scene cues.

3) Modality in Multi-Scale: The above mentioned modal-
ities are all in one single scale. In natural videos, action
instances usually vary in scales. We introduce the multi-scale
based data augmentation technique of [4] and [15] to learn
more robust deep features by constructing 4 pyramid repre-
sentations for each of the input semantic cue according to the
scale sets: (1) for full image: {1/2, 1/

√
2, 1,
√

2}; (2) for actor-
related regions and AP: {1/

√
2, 1,
√

2, 2}. After that, the multi-
scale representations of each modality will be rescaled to the
same size for training. In the end, the four-scale feature maps
of one modality are averaged to produce the final feature
representation, and then L2-normalize it [24]. Table VIII

shows the results of different methods to combine the multi-
scale representations. “Average” performs best among them.
Consequently, we apply “Average” fusion in the following
experiments. Figure 4 shows the L2-normalized multi-scale
merged feature representation (at layer Conv5_3 ) of scene of
the spatial-stream and the temporal-stream.

4) Architecture of Our Network: Feichtenhofer et al. [6]
proposed a ST-CF method upon the TS-Net with two main
improvements: (1) rather than fusing softmax scores, they
fuse the two streams features at the last convolutional layer
by injecting a convolution fusion layer; (2) Substituting the
typical 2D convolution and pooling with 3D convolution
followed by 3D pooling to fuse features spatiotemporally.

Unlike the baseline work of [6] which just needs to fuse
two modalities, our inputs are much more complicated. With
the 3 types of modalities, i.e. scene, the actor-related regions
(ARs) – AR, UH/LH regions of the actor, and AP, we construct
a MS-Net that consists of three TS-Nets. In particular, one
scene related TS-Net (TS-Net1), one ARs based TS-Net (TS-
Net2), and one AP based TS-Net (TS-Net3). As shown in Fig-
ure 5, for the ARs based TS-Net2, the feature maps of 3 RGB
ARs modalities – AR, UH/LH regions of actor in the spatial
stream are weighted summed at the last convolutional layer.
The weights are set as – AR: UH: LH = 1: 0.5: 0.5. The feature
maps of 3 optical flow ARs modalities in the temporal stream
are conducted in the same manner. We compare different
weights setting in Table VI. We fuse the prediction scores
of the three TS-Nets by averaging as [4] and [9] for final
action recognition. For each of the three TS-Nets, like the
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Fig. 5. Using the TS-Net2 for explanation (with the VGG16 architecture).
Illustrations of 1) the combination of the feature maps of 3 actor-related
regions (ARs: AR, UH, LH) at the last convolutional layer (Conv5_3) and,
2) the fusion of spatial stream and temporal stream via the ST-CF operation.

depiction of TS-Net2 in Figure 5, we adopt the ST-CF to merge
the appearance feature and motion feature spatiotemporally.
Figure 1 shows the architecture of our framework.

5) Implementation Details: All the input modalities are
resized to 224 × 224. We take the strategies of [6] to train
three TS-Nets. For TS-Net1, its spatial network and temporal
network are trained on the full RGB image and optical flow.
For TS-Net2, its spatial network and temporal network are
trained on the captured AR RBG image and AR flow image.
For TS-Net3, we use TS-Net2. Therefore, the modalities of
AR, UH, LH, and AP are all using the architecture of TS-
Net2. The pre-trained VGG16 models of [6] are introduced
as the initialization, and we fine-tune the spatial and temporal
networks with the following modifications: (1) the learning
rate is set to 10−4 and 5 × 10−3 respectively for the spatial
network and the temporal network, and decreased by a factor
of 10 as soon as the validation accuracy saturates; (2) the
dropout ratio is set as 0.90 for the spatial network and 0.85 for
the temporal network. For testing, we use 25 frames randomly
sampled from each video.

IV. EXPERIMENTS

In this section, to evaluate the performance of our pro-
posed MS-Net, four popular benchmark datasets are used for
experimenting and analyzing: JHMDB [55], HMDB51 [57],
UCF-Sports [54], and UCF101 [56]. Extensive experiments
are conducted to test the effectiveness of our model which is
based on the VGG16 architecture in five aspects: (1) the effect
of the detected semantic visual cues according to our STS-
VOS method; (2) the performance of the multiple modalities
in multi-scale; (3) the influence of the spatiotemporal fusion
strategy; (4) the effect of deeper architecture; (5) comparing
our method with the state of the art algorithms.

A. Datasets and Evaluation Protocols

JHMDB is a subset of HMDB51, with 928 video clips
of 21 different actions. Each action contains 36 to 55 video

clips. One clip includes the number of frames range from 15 to
40 with frame size 320× 240.

HMDB51 consists of 6766 action videos which are divided
into 51 action categories. The videos are collected from a wide
range of sources, including movies and online videos.

UCF-Sports includes 150 video clips with 10 different
actions. The videos are captured in cluttered, dynamic envi-
ronments, and each of them corresponds to one action.

UCF101 contains 13320 videos categorized into 101 action
classes. For one class, there are more than 100 video clips, and
each video clip with an average length of 180 frames. They
cover a large range of activities such as sports and human-
object interaction. It is a challenging dataset as the captured
videos change significantly in scale, illumination, background
and camera motion.

For JHMDB and UCF-Sports, we follow the suggested
evaluation protocol of [55] and [54], and report the average
accuracy over the three splits. Besides, to evaluate the per-
formance of our extracted semantic cues – AR, UH, LH, and
AP, we compute the mAP at the video level as in [3]. For
HMDB51 and UCF101, we utilize the split 1 for experimental
analysis and report final accuracy averaged over the three
splits.

B. Evaluation the Effect of Our STS-VOS Method

Figure 6 shows the precision-recall (PR) curves and the
mean absolute error (MAE) [68] of the estimated SSM of 4 dif-
ferent approaches – the baseline salient video object detection
method [1], the saliency maps combination techniques, i.e.
product, average, and our adaptive fusion method, on three
benchmark datasets. Our method outperforms the other three
approaches on all these datasets. Comparing to the baseline
method [1], the MAE gain of us reaches to 20.18%, 5.64%,
and 12.58% on the datasets SegTrack [69], SegTrack V2 [70],
and Ten-Video-Clips [71] respectively. It demonstrates that
improving the two object segmentation methods in [1], adding
other valid complementary object signatures are effective to
further boost the performance of detecting salient objects in
videos. In addition, the results also reveal that our adaptive
fusion strategy is useful, which performs much better than the
classical product and average fusion schemes.

Figure 7 shows the quantitative comparisons of actor seg-
mentation on the UCF-Sports dataset. The measure Accuracy-
Overlap Thresholds of [29] is used for evaluation. The IOU
scores for the segmentations are computed and the overlap
threshold varies from 0.1 to 0.6. Our method performs better
than all of them at every threshold, which demonstrating
that the proposed STS-VOS approach is able to integrate the
advantages of the three segmentation techniques and extract
the actors accross the whole video robustly and accurately.

C. Evaluation the Effect of Our Extracted Semantic Cues

In this subsection, to evaluate the effect of the captured
human-related semantic cues by our STS-VOS approach,
we perform the following studies: whether our exploited STS-
VOS method is effective to detect the actor, and the captured
actor is better than the objective proposals extracted by other
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Fig. 6. Comparison of PR curves (top row) and MAE (bottom row) on datasets SegTrack (left column), SegTrack v2 (middle column) and Ten-Video-Clips
(right column).

Fig. 7. Comparison of actor segmentation on the UCF-Sports.

object detection methods for action recognition; whether the
UH and LH regions of the actor as well as the AP are beneficial
for action recognition; whether these semantic cues are com-
plementary and would boost the performance of recognizing
human actions when combing them all. To conduct these
investigations, we utilize the TS-Net with VGG16 architecture
as the baseline, and implement three kinds of experiments
on JHMDB, UCF-Sports and UCF101 datasets for analysis.
In particular, as the actor bounding box of JHMDB and UCF-
Sports are annotated, we also use them for the purpose of
action detection evaluation.

First, we study the effect of the human detection quality
on action recognition by comparing different object detection
methods. Six excellent video-based methods, i.e. one state-
based video tracker (suggested in [19]) – extended Lucas-
Kanade (ELK) [39], five video segmentation methods – FOS
and B-RPCA as well as their variants IFOS and IB-RPCA,
and the CNN feature integrated ObjFlow, and two currently
popular used image-based deep learning approaches – R-CNN
and Faster R-CNN, are selected for comparison. The human
region of interests (ROIs) are computed by directly running

the source code supplied by the authors. We only use the
detected objects (bounding boxes) as the input. To deal with
multiple object ROIs captured by R-CNN and Faster R-CNN,
we adopt the multiple instance learning technique of [7] to
integrate the scores by a max operation. Table I shows that
the quality of the detected ROIs significantly influence the
accuracy of action recognition. Our STS-VOS method perform
best to extract AR in videos to supply features for action
recognition. The accuracy of action recognition reaches to
62.11% by using the AR detected by our STS-VOS, which
is 2.93% higher than employing IFOS (IFOS outperforms
FOS, B-RPCA and IB-RPCA), is 3.99% better than using
ObjFlow, and is 6.22% more precise than utilizing ELK. The
results reveal that exploiting advanced video-based human
detector is a promising way to enhance the performance of
video-based action recognition. In addition, the results of the
two deep learning based image object detection methods, i.e.,
R-CNN and Faster R-CNN are comparable to the five hand-
crafted video segmentation methods, but are much worse than
our STS-VOS approach. This is because the proposed STS-
VOS method is able to combine valid complementary object
signatures of different sources, leading to it is able to detect the
actor-tube in videos accurately under various complex cases,
and also some irrelevant objects are greatly compressed where
these irrelevant objects are not useful for action recognition.

There is no dataset supplies the ground truth of AP, thus
we cannot directly evaluate the performance of AP detection.
Instead, we are able to indirectly evaluate the influence of AP
detection on recognizing human actions. Table II shows the
accuracy of action recognition by setting different thresholds to
extract AP. When setting the threshold to the adaptive median
value (see Eq. (14)), best result is obtained. It displays that the
quality of the detected AP affects the performance of action
recognition explicitly.

Second, we investigate the influence of UH region
(A-Upper) and LH region (A-Lower) of the actor. We show
the per-class mAP of the TS-Net with VGG16 on JHMDB
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TABLE I

ACTION RECOGNITION PERFORMANCES OF THE TS-NET USING VGG16 ACROSS THE THREE SPLITS ON JHMDB DATASET WITH DIFFERENT SOURCES
OF ACTOR ROIs CAPTURED BY DIFFERENT METHODS. GT REPRESENTS THE GROUND TRUTH ACTOR ANNOTATION

TABLE II

ACTION RECOGNITION PERFORMANCE OF THE TS-NET3 ON

SPLIT 1 OF UCF101 WITH DIFFERENT SETTINGS OF
THRESHOLDS TO EXTRACT AP

in Table III and on UCF-Sports in Table IV. Among the three
semantics, the A obtains the top performance in mAP, which
indicates that the complete AR is critical importance for an
action. The UH region and LH region have different perfor-
mances in different datasets. For example, on JHMDB, the
A-Upper achieves approximate result to A (63.3% vs 64.9%),
and outperforms A-Lower by 4.9%. However, on the UCF-
Sports dataset, the A-Upper performs worst, which is 5.22%
lower than A-Lower. This reflects that these two datasets
consist of different types of actions, i.e., for JHMDB the upper
region of the action is most discriminative (daily actions),
while for UCF-Sports the actions are dominated in the lower
region (sport actions). The most accurate result can be obtained
by combing the three semantics. All (the three actor-related
regions) outperforms A by 2.5% on JHMDB and by 4.85%
on UCF-Sports. Consequently, it is essential to extract the
UH/LH regions of the actor and integrate them together with
the actor for action recognition in videos as these semantic
cues are complementary. To further validate this characteristic,
we conduct an experiment on split one of the UCF101 dataset.
As shown in Table V, the accuracy reaches to 91.97% (“All”)
when incorporating these human-related semantics.

For some actions, the half region of actor outperforms the
whole actor. For instance, on both JHMDB and UCF-Sports
datasets, A-Upper performs better than A for “Golf”. Besides,
A-Upper gains 4.4% for “Shootgun” and 3.1% for “Sit” over
A on JHMDB. On the other side, A-Lower outperforms A
by 2.9% for “Climbstairs” on JHMDB and by 23.78% for
“Swing1” on UCF-Sports. Taking “Golf” for explanation,
the most significant features to recognize this action are
distributed in the UH region of the actor due to the intentional
bodily movement of the handle and the upper torso.

Third, we evaluate the performance of the three types of
cues, i.e., scene (S), actor-related regions (ARs), and the acting
part (AP), which are corresponding to TS-Net1, TS-Net2, and
TS-Net3 respectively. Table VII demonstrates the effectiveness
of our idea that exploiting useful semantic cues are helpful for
recognizing human action in a video. Especially, when com-
paring the second (S), third (ARs) and fourth (AP) columns
to the fifth (S + ARs) and sixth (S + AP) columns, we can
find that the results from the integrated semantic cues are
better than using one single semantic cue. This can also be
observed in the seventh (S + ARs + AP) column, when

incorporating the captured two types of semantics with the
original full image, the recognition accuracy is improved by
1.72% (91.35% to 93.07%). Because of the exploited ARs
and AP supply strong complementary feature information to
the scene. Besides, the features distributed at the ARs and
the AP are closely relevant to human actions. Moreover,
the learned features from these two types of semantic visual
cues are robust with respect to occlusions, and the background
noise is significantly suppressed in these regions. Therefore,
all the TS-Net1, TS-Net2, and TS-Net3 are important and
necessary, no one is more important than other two, and
combing the three TS-Nets is easier to recognize human
actions and is able to boost the recognition accuracy. The
result of S (TS-Net1), which is sightly more accurate than AP
(TS-Net3), reveals that scene context supplies very significant
image-level spatial cue for action recognition. ARs (TS-Net2)
performs better than both S (TS-Net1) and AP (TS-Net3),
because an action is conducted by an actor who implements
intentional bodily movement. One of the most crucial reasons
why AP (TS-Net3) obtains the worst result among the three
semantics is that action is scene context and actor related. The
AP, which constrained to the bodily movement region, only
supplies the body acting information locally. It can be easily
confused if the actions have similar bodily movement, such as
“EyeMakeup” and “Lipstick.” However, the AP (TS-Net3) is
quite useful if combined with other cues, e.g., S (TS-Net1) and
ARs (TS-Net2). Last but not least, another one contribution
due to the extracted two types of semantics is that, as shown
in Figure 2, the AR is able to answer who is playing the action,
and the AP is able to answer where is the action happening.

D. Evaluation of Modalities in Multi-Scale

In reality, an action can occur at arbitrary scales. We conduct
multi-scale operation to increase robustness to scale changes.
Table IX shows the effect of our multi-scale method. By for-
mulating each modality into 4 scales, we are able to extract
features in different scales. This is helpful to extract better
local deep features and improving the recognition accuracy.
Comparing to single-scale, the accuracy is boosted by 0.68%
(93.07% vs 93.75%) on the UCF101 dataset with the applica-
tion of our multi-scale strategy.

E. Evaluation of Spatiotemporal Fusion

How to fuse the spatial stream and the temporal stream spa-
tially and temporally is still a difficult problem. We introduce
the ST-CF method [6] to fuse the two steam features spa-
tiotemporally, and evaluate whether this strategy is effective.
Table X shows the results of ST-CF and the traditional linearly
averaging based late fusion as [7] on split one of UCF101.
Clearly, the ST-CF scheme obtains better result than the
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TABLE III

PER-CLASS MAP ON SPLIT 1 OF JHMDB DATASET WITH RESPECT TO MULTIPLE ACTOR-RELATED REGIONS. A REPRESENTS THE DETECTED ACTOR,
A-Upper AND A-Lower REPRESENT THE UPPER HALF REGION AND LOWER HALF REGION OF THE ACTOR

TABLE IV

PER-CLASS MAP ON SPLIT 1 OF UCF-SPORTS DATASET WITH RESPECT TO MULTIPLE ACTOR-RELATED REGIONS

TABLE V

ACCURACY OF THE TS-NET2 ON SPLIT 1 OF UCF101 WITH RESPECT

TO MULTIPLE ACTOR-RELATED REGIONS

TABLE VI

ACCURACY OF THE TS-NET2 ON SPLIT 1 OF UCF101 WITH RESPECT TO

MULTIPLE ACTOR-RELATED REGIONS WHICH ARE COMBINED WITH

DIFFERENT WEIGHTS – AR: UH: LH

TABLE VII

ACCURACY OF THE MS-NET ON SPLIT 1 OF UCF101 WITH THREE
SEMANTIC CUES BASED INPUT MULTI-MODALITIES. S REPRESENTS

THE SCENE – FULL RGB IMAGE AND FULL FLOW IMAGE

(TS-NET1), ARs DENOTES THE ACTOR-RELATED

REGIONS (TS-NET2), AP REPRESENTS THE ACTING
PART OF THE ACTOR (TS-NET3)

TABLE VIII

ACCURACY OF THE MS-NET ON SPLIT 1 OF UCF101 WITH RESPECT TO
COMBINE THE FEATURE REPRESENTATIONS OF EACH MODALITY IN

MULTI-SCALE WITH DIFFERENT METHODS

traditional fusion (93.91% vs 93.66%), because, the ST-CF is
able to learn correspondences between highly abstract spatial
stream features and temporal stream features. Furthermore,
it can incorporate the features of spatial and temporal steams
over time.

TABLE IX

ACCURACY OF THE MS-NET WITH MULTI-MODALITIES

ON SPLIT 1 OF UCF101 IN MULTI-SCALE

TABLE X

ACCURACY OF MS-NET WITH MULTI-MODALITIES ON SPLIT 1
OF UCF101 BY USING TWO FUSION STRATEGIES

TABLE XI

ACCURACY OF OUR SPATIOTEMPORAL MS-NET ON SPLIT 1 OF
UCF101 WITH DIFFERENT NETWORK ARCHITECTURES

F. Evaluation of Deeper Architectures

Previous works [4], [6], [18] reveal that deeper network
architectures are helpful for enhancing action recognition in
videos. We evaluate the performance of usually employed
shallow network architecture: CNN_M [23] and recent very
deeper network architectures: VGG16 and VGG19 [51]
in our MS-Net. As shown in Table XI, when using the
deeper VGG16 to replace the CNN_M, much better results
are obtained. The accuracy improvement reaches to 7.6%
(“S:VGG16, T:VGG16” 93.91% vs “S:CNN_M, T:CNN_M”
86.31%). However, when comparing the results of “S:VGG19,
T:VGG19” with “S:VGG19, T:VGG16”, we can find that
the deeper VGG19 performs worse than VGG16 in the tem-
poral stream. Only slightly gain is attained when utilizing
VGG19 to substitute VGG16 in the spatial stream (“S:VGG19,
T:VGG16” 93.92% vs “S:VGG16, T:VGG16” 93.91%). This
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TABLE XII

COMPARISON (ACC.(%)) WITH STATE OF THE ART METHODS ON THE
UCF101 AND HMDB51 DATASETS (AVERAGE ON 3 SPLITS)

TABLE XIII

COMPARISON OF SPEED (FPS) FOR TESTING ON THE UCF101

reflects that the spatial stream and the temporal stream have
different characteristic. Taking a further investigation on the
relationship between the deeper network and the tow-stream
related architectures is a future important research topic for
the task of action recognition in videos.

G. Comparison With State of the Arts

We compare our proposed method with the state of the art
video-based action recognition approaches over the three splits
on UCF101 and HMDB51 in Table XII. The results of these
methods are quoted from the original papers. The comparison
is classified into 4 groups:

1) In the top group, the results of three famous hand-crafted
algorithms [28], [61], [62] are shown. Especially, the improved
Dense Trajectories (iDT) is one of the most successful hand-
crafted features for action recognition currently. Our method
outperforms these three approaches by at least 4.8% and 2.1%
(comparing with the best result of [62]) on UCF101 and
HMDB51 respectively.

2) In the middle top group, seven deep learning meth-
ods, which utilize a comparable baseline architecture to ours
(VGG16), are selected for evaluation. In contrast to the orig-
inal TS-Net [5], the results of our method are much better
(93.9% vs 88.0% on UCF101, 67.2% vs 59.4% on HMDB51).
Besides, compared to the most recent two-stream based
method ActionVLAD [63] which uses the same VGG16 archi-
tecture as us, our results are 1.2% and 0.3% more accurate
on UCF101 and HMDB51. Yang et al. [26] exploited a new
framework to combine multiple layers and multiple modalities
of CNNs. To model the long-term temporal information over

an entire video, it proposed FC-RNN instead of utilizing the
standard RNN structure. However, [26] performs not only
much worse than us (91.6% vs 93.9% on UCF101, 61.8%
vs 67.2% on HMDB51), but also worse than [4], [6], and [7],
where these three methods do not employ LSTM, a variant of
RNN, same as us.

3) In the middle bottom group, the deep learning methods
that combine iDT are chosen for analysis. It is clear that
integrating the iDT into our framework, the action recognition
performance is further enhanced by 0.9% on UCF101 and
3.2% on HMDB51 respectively. Our method performs best
among them.

4) In the bottom group, the TSN [4] and ST-ResNet [64],
which based on ultra-deep architectures like BN-Inception [58]
and ResNet [65], are chosen for comparison. Both TSN and
ST-ResNet achieve high performance. However, it is interest-
ing to note that together with the iDT, our VGG16 based
method still performs better than these ultra-deep two-stream
baselines. On UCF101, our method outperforms TSN by 0.6%
and outperforms ST-ResNet by 0.2%. On HMDB51, our result
is 1.0% and 0.1% more accurate than TSN and ST-ResNet.
The superior performance of our method demonstrates that
exploiting useful semantic cues, explicitly integrating multi-
modalities in multi-scale, designing good fusion techniques,
and using proper deep architectures are able to boost the
performance of TS-Net on action recognition significantly.

The proposed method obtains a reasonable computational
efficiency. To be specific, as shown in Table XIII, for testing,
it can averagely process about 4.3 frames per second (FPS)
on the UCF101 dataset with one Titan-X GPU. The proposed
method performs slightly slower than TSN [4] but gets more
accurate results. Which demonstrates that our method achieves
a good balance between efficiency and accuracy.

V. CONCLUSION

In this paper, we proposed an advanced spatiotemporal
MS-Net method, which stems from the TS-Net, for video-
based action recognition. We designed a STS-VOS method to
segment human-related semantic cues in videos. By fusing
distinctive video saliency maps which are estimated from
disparate object signatures, we can obtain a robust video SSM.
An energy function is then constructed based on SSM to
segment both the actor and the actor’s acting part. These two
semantic cues are leveraged as input modalities, together with
other modalities (i.e. the scene, and the UH/LH regions of
the actor), we formulate five types of RGB/Flow modalities
(10 modalities) to help improving the performance of the
TS-Net to recognize human actions. Besides, we extend these
modalities into multi-scale to learn more robust deep features.
Finally, a ST-CF method was adopted to fuse the feature maps
of each type of RGB/Flow modalities spatiotemporally. In the
future, we plan to exploit other semantic cues and propose
more effective fusion approaches to combine the spatial and
temporal streams for action recognition in videos.

A. Limitations

1) The proposed STS-VOS method is still not good at
capturing the primary actor if the scene contains multiple
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humans, the background large-scale objects have apparent
movement, etc.

2) Extracting the human-related semantics, i.e. AR and AP,
to construct new streams is more useful for the case where an
action is conducted by one actor, while it is not very beneficial
for recognizing the actions that there are multiple actors in the
scene, or the scene includes multiple activities.

3) The whole architecture is not end-to-end as it needs
to fuse the scores of the three TS-Nets, and it requires to
preprocessing the RGB and flow images to obtain semantic
cues (i.e., AR and AP) with our STS-VOS method separately.

B. Future Work

There are several ways in which we can address these
limitations, and further enhance the practical application of
our approach. First, to boost the performance of our STS-
VOS method, we can integrate more effective object signatures
which are computed by the newly deep CNN methods, and
improving the fusion approach to combine different signatures.
Second, to handle the scene contains multiple actors and
multiple activities, we should design an adaptive approach to
combine the three TS-Nets based on the number of detected
object candidates according to ObjFlow. If an action video
contains multiple actors or multiple activities, we should
reduce the weights of TS-Net2 and TS-Net3. Third, incorpo-
rating the feature representations at the last convolutional layer
and exploit a unified spatio-temporal loss function to optimize
the architecture end-to-end is a promising way to improve
the performance of action recognition. Third, establishing an
effective dataset which contains the ground truth of AP, is a
good work to evaluate the performance of AP detection, and
find out the influence of AP detection on action recognition.
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