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a b s t r a c t

We present a novel combined post-filtering (CPF) method to improve the accuracy of optical flow
estimation. Its attractive advantages are that outliers reduction is attained while discontinuities are well
preserved, and occlusions are partially handled. Major contributions are the following: First, the
structure tensor (ST) based edge detection is introduced to extract flow edges. Moreover, we improve
the detection performance by extending the traditional 2D spatial edge detector into spatial-scale 3D
space, and also using a gradient bilateral filter (GBF) to replace the linear Gaussian filter to construct a
multi-scale nonlinear ST. GBF is useful to preserve discontinuity but it is computationally expensive. A
hybrid GBF and Gaussian filter (HGBGF) approach is proposed by means of a spatial-scale gradient signal-
to-noise ratio (SNR) measure to solve the low efficiency issue. Additionally, a piecewise occlusion
detection method is used to extract occlusions. Second, we apply a CPF method, which uses a weighted
median filter (WMF), a bilateral filter (BF) and a fast median filter (MF), to post-smooth the detected
edges and occlusions, and the other flat regions of the flow field, respectively. Benchmark tests on both
synthetic and real sequences demonstrate the effectiveness of our method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Motion is an intrinsic characteristic of the world [1], providing
essential information that can be used in a wide variety of image
processing and visual tasks, such as 3D-reconstruction, segmenta-
tion, tracking and video compression. One of the most successful
motion estimation approaches is the variational optical flow method
[2,3], due to two inherent advantages, i.e. its comprehensive func-
tional form and an efficient numerical optimization. The variational
optical flowmethod was introduced by Horn and Schnuck (HS) [4]. It
combines a local, gradient-based data matching term with a global
smoothness term. The data term assumes that each pixel's brightness
remains invariant during a short time. The smoothness term reg-
ularizes each pixel's flow by its neighbors' flow. It assumes that the
flow vector varies smoothly almost everywhere over the flow field. In
practice, however, these two basic constraints are seriously violated.
Various extensions and improvements have been proposed during
the past 30 years in order to overcome the drawbacks of the original
HS model.

These variations can generally be classified according to the
following three aspects: (1) Modification of the variational

formulation, such as improvements of the data term to make the
algorithm more robust under illumination changes [5], invariant
under different types of motion [6], and more resistant to noise [7]
and outliers [6,7], and large displacements[8]. Modifications of the
regularizer's capability to handle motion discontinuity [9,10].
Selection of the optimal weighting parameter λ to obtain a better
balance between the data term and the regularization term
[10,11]. (2) Pre-processing of the input frames to reduce violations,
such as noise suppression of the frames to remove, for example,
high frequencies that might have a negative influence on the
result. Commonly used filtering methods include Gaussian filter
[4], PDE filter [12] and non-local filter [13]. Most of these methods
do not only reduce noise, but also enhance important structures of
the frames [14]. (3) Post-processing of the flow field to improve
the accuracy, e.g. usage of available filters for smoothing, such as,
Kalman filter [15], median filter (MF) [14,16], and bilateral filter
(BF) [17,18].

Wedel et al. [16] successfully introduced a MF to remove the
flow noise. However, his MF approach over-smoothes the edges.
Sun et al. [14] proposed a modified WMF method to prevent this
kind of over-smoothing, and saved the computational time by solely
smoothing the detected motion boundaries with the Sobel edge
detector. However, this method still has some drawbacks. First, the
Sobel detector often performs poorly in extracting flow boundaries.
Second, wrong flow components in the MF [19] window can cause
serious errors. Surprisingly, although smoothing the flow field
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boundaries is a reasonable way to improve accuracy and efficiency,
few efforts have been devoted so far to analysis of the connection
between the smoothing performance and the extraction of flow
features (e.g. edges and occlusions). To the best of our knowledge,
this work is the first systematical analysis of the importance of the
above mentioned connection.

We present a novel 3D nonlinear ST based Harris edge detector
to identify flow edges, and apply a piecewise occlusion detection
approach to detect flow occlusions. The ST has first been proposed
by Förstner and Gülch [20]. Since it represents the first order
derivative information of an image, it can be used as a local
geometry indicator to analyze the geometric structure of a scalar-
valued data set (e.g. an image) or a vector-valued data set (e.g. the
flow field). Compared to traditional derivative-based methods, the
ST has two outstanding characteristics due to two Gaussian
smoothing operations: (1) smoothing the data set yields robust-
ness under noise by introducing an integration scale and (2)
integrating local structure information (e.g. orientation) from a
neighborhood makes ST able to distinguish features [21].

Since Gaussian smoothing is isotropic, it has some disadvan-
tages: (1) detailed and weak features, such as some textures are
smoothed out, (2) distinctive discontinuities such as edges are
blurred and, and (3) points belonging to different regions, such as
occluded points and non-occluded points, would be roughly
composed. These disadvantages are caused by the fact that the
Gaussian filter is fixed in both size and shape, and it cannot adapt
to the local structures. Therefore, the Gaussian filter based linear
ST cannot detect edges accurately. For instance, the identified
edges are often wider than the real edges or discontinuous.

Different anisotropic filtering methods have been proposed to
replace the linear Gaussian filter to construct a nonlinear ST, like
anisotropic diffusion [21], BF [17,18,22] and mean shift filtering
[23]. They can adapt to local structures, avoiding smoothness
across discontinuities and preserving useful information. The BF,
which extends the concept of Gaussian filter by adding a Gaussian
weighting function that depends on the difference between pixel
intensities, is most attractive [24] due to its inherent advantages:
(1) it is non-iterative, which makes it overcomes the instability of
the iterative method – since small errors in derivatives will be
magnified after each iteration, (2) only two parameters are needed
and these parameters have explicit geometrical and graphical
meaning, therefore, they are easy to be constructed and imple-
mented, and (3) as illustrated in [17], the BF can handle occlusion.
In this work, the BF is used to replace the Gaussian filter to
construct a nonlinear ST, and also it is used to replace the MF to
smooth the occlusions of the flow field.

The BF assigns higher weights to pixels with smaller spatial
and/or color distances computed with respect to the central pixel.
In this way, smoothing is implemented adapt to local structures. To
distinguish trivial structures from true corners, Zhang et al. [22]
introduced a GBF which uses both spatial and gradient distances to
smooth the 2D spatial ST. In this work, we introduce the GBF to
construct a nonlinear 3D ST to detect edges.

A direct implementation of the BF is computationally expen-
sive. It requires Oðs2

s Þ operations per pixel. Especially when the
data set is large, it is too slow to be executed in real-time. Porikli
[25] proposed a fast O(1) BF using Taylor polynomials to approx-
imate the standard Gaussian BF. However, the Taylor polynomials
provide only good approximations of the range Gaussian function
just locally around the origin. Different from the O(1) BF method,
in this work, we apply a fast spatial-scale gradient based SNR
segmentation and a hybrid smoothing approach – HGBGF to treat
the low efficiency of the BF.

For a vector-valued data set, the primary derivative errors are
concentrated at discontinuities [26]. Because the Gaussian filter is
good enough to smooth flat regions and the BF is better at

smoothing discontinuities, combing the advantages of the two
filters can preserve edges, tackle occlusions and also reduce time
consumption. Therefore, we present a novel spatial-scale gradient
SNR measure to extract discontinuities. Then, we apply the BF and
the Gaussian filter to smooth the ST elements in separate regions,
respectively.

Multi-scale is an intrinsic property of the signal structure in
nature [27]. Liu et al. [28] gave a definition of edge scale and
pointed out that there exists an optimal scale of the edge – the
optimal scale is a parameter to indicate at which resolution(s) an
edge is most salient for a human. We extend the traditional spatial
ST based edge detector into spatial-scale space by adding scale
information. Integrating the HGBGF into our spatial-scale 3D ST, a
local pattern adaptive framework is constructed, resulting in
better detection of flow field edges.

Using a suitable filter, such as the MF, to post-filter the
intermediate flow field during incremental estimation and warp-
ing is an effective way to remove outliers and a key technique to
recent performance gains [14,16]. However, the MF is not good at
handling occlusions. In contrast, the BF has been successfully
applied to treat occlusion [17,18]. In this paper, we combine the
advantages of the WMF [14] and the BF[16], and propose a
Combined Post-Filtering (CPF) method to smooth the classified
flow field regions.

The paper is organized as follows: Section 2 describes the
proposed “ClassicþCPF” optical flow algorithm. In Section 3, a
nonlinear 3D spatial-scale Harris edge detector to detect flow
edges, and a piecewise occlusion detection approach to extract
occlusions are introduced. A CPF method for post-filtering differ-
ent regions of the flow field with different filters is proposed in
Section 4. In Section 5, experiments and evaluations are conducted
to the proposed algorithm. The paper is concluded in Section 6,
which includes possibilities for future development.

2. “ClassicþCPF” optical flow algorithm

Based on the brightness constancy assumption (data term), and
combined with a global smoothness constraint (smoothness term),
Horn and Schunck [4] proposed the variational optical flow method
for motion estimation between two successive frames I1, I2:

Eðu; vÞ ¼ ¼
Z
Ω
ðI2ðxþu; yþv; tþdtÞ� I1ðx; y; tÞÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

data term

dΩþλ
Z
Ω
ðj∇uj 2þj∇vj 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

smoothness term

dΩ

ð1Þ
where ðu; vÞ ¼ ðdx=dt; dy=dtÞ is the displacement vector field. It is a
2D projection of the real 3D motion in the world.

One state-of-the-art variational method is the TV-L1 non-local
algorithm – “ClassicþNL” [14], which incorporates the WMF
during optimization to smooth the flow field. Due to the WMF,
the accuracy is significantly improved. However, the WMF is poor
to handle occlusions (see Section 4.1). To overcome this problem,
we classify the optical flow field into three parts – edge regions,
occlusions and flat regions. As illustrated in Section 1, we combine
the advantages of WMF and BF, and use a CPF method to smooth
flow edges, occlusions as well as flat regions with three different
filters. Based on the baseline algorithm of “ClassicþNL” [14], a
“ClassicþCPF” algorithm is proposed:

Eðu; v;u; vÞ ¼∑
i;j
fρDðI1ði; jÞ� I2ðiþu; jþvÞÞþλ1ðρSðjux j ÞþρSðjuy j Þ

þρSðjvx j ÞþρSðjvy j ÞÞgþλ2ðj ju�uj j 2þj jv�vj j 2Þ
þ ∑

iE ;jE

∑
i0E ;j

0
E ANiE ;jE

wiE ;jE ;i
0
E ;j

0
EE
ðjui;j�ui0 ;j0 j þ jvi;j�vi0 ;j0 j Þj iE ;jE ;i0E ;j0E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

edge regions-weighted median Filter
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þ ∑
iOcc ;jOcc

∑
i0Occ ;j

0
Occ ANiOcc ;jOcc

wiOcc ;jOcc ;ii
0
Occ ;j

0
Occ
ðjui;j�ui0 ;j0 j þ jvi;j�vi0 ;j0 j Þj iOcc ;jOcc ;i0Occ ;j0Occ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

occlusons-bilateral filter

þ ∑
iFlat ;jFlat

∑
i0Flat ;j

0
Flat ANiFlat ;jFalt

medianðjui;j�ui0 ;j0 j þ jvi;j�vi0 ;j0 j Þj iFlat ;jFlat ;i0Flat ;j0Flat|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
flat regions-median filter

ð2Þ
Where ρSðxÞ ¼ ρDðxÞ ¼ ðx2þε2Þα , α¼ 0:45, and ε¼ 0:001. λ1 and λ2
are the weighting parameters, controlling the relative importance
of each term. u and v are the auxiliary flow fields of u and v, and
approximations of u and v. Ni,j represents the neighborhood of
pixel (i, j). The third and the fourth term are weighted non-local
terms which integrate the information of the image and the flow
field. They impose a particular smoothness assumption within a
specified region of the auxiliary flow field (u, v) and prevents over-
smoothing across discontinuities. wiE ;jE ;i

0
E ;j

0
E
is a WMF parameter of

the third non-local term, which is calculated using Eq. (9) in work
[14]. wiOcc ;jOcc ;i

0
Occ ;j

0
Occ

is a BF parameter of the fourth non-local term,
which is computed according to (using u for example):

wði; j; i0; j0Þj u ¼ exp �j i� i0 j 2þj j� j0 j 2
2s2

1

 !
� exp �j Iði; jÞ� Iði0; j0Þj 2

2s2
2

 !

�exp �ðui;j�ui0 ;j0 Þ2
2s2

3

 !
� Occði; jÞ ð3Þ

Occ(i, j) is an occlusion function and is computed with Eq. (20). The
BF weight of v is calculated in the same way as u. We set s1 ¼ 3:0,
s2 ¼ 7:0 and s3 ¼ 1:0.

The optical flow field (u, v) is estimated by separating Eq. (2)
into two parts. First, the variational optical flow part, which is used
for calculating the flow field (u, v). Second, the post-filtering part,
which is used to smooth outliers and obtain an outliers-removed
auxiliary flow field (u, v). The first part can be solved by the
traditional numerical optimization algorithms (e.g. Gauss-Seidel,
SOR, and Conjugate Gradient). For the second part, a WMF [14], a
BF (Eq. (3)) and a MF [19] are implemented for post-filtering (see
Section 4).

3. Flow edges and occlusions detection

Post-filtering the flow field is an effective way to remove
outliers [14,16] and improve the accuracy. The flow field is a
representation of the apparent motion of each pixel of the input
images. Therefore, sharp variations of the flow field (e.g. edges and
occlusions) reflect salient changes of the image. Variational optical
flow algorithms mostly capture the first-order motion, while they
easily fail when sudden motion changes occur. Hence, inaccurate

displacement vectors are concentrated at edges – intensities
sharply change, and occlusions – natural information disappears.
Conversely, much fewer flow errors are distributed at flat regions.
Smoothing flat regions only gives us a marginal benefit, while
some detailed structure information is smoothed out. Further-
more, the computational time will sharply rise as a result of the
increased number of filtering points. We select the Middlebury
sequences [2] for testing (see Fig. 1), and compare two groups of
results which are derived from the classical “ClassicþNL” algo-
rithm [14]: one is obtained by MF with just the Sobel detected
edges, another is obtained by MF with the whole flow field. Fig. 1
(a) shows that a full MF has no advantage. For most of the
sequences (e.g. Dimetrodon, Hydrangea, Venus, Urban2), the
accuracy of MF the full flow field is worse than MF the flow edges.
On the other side, from Fig. 1(b), we see that the computational
time of full MF is much higher (more than 2 times higher) than MF
only the detected flow edges. Consequently, extracting flow edges
and occlusions, and handling them properly is an effective way to
remedy the variational optical flow algorithms as well as save time
consumption.

How to effectively identify edges and occlusions of the flow
field is the crucial step for post-filtering. However, it is difficult to
design feature detectors which can identify edges or occlusions
accurately while not responding to other features. In this section,
we will describe an accurate nonlinear 3D edge detector to extract
flow edges. In additional, the combined flow divergence and
pixel projection difference method [18] is used to detect flow
occlusions. More importantly, we improve its performance with a
piecewise setting.

3.1. Linear 3D spatial-scale Harris edge detection

In the image domain, edge detectors are concerned with the
localization of sharp changes of image intensity and the identifica-
tion of the physical phenomena, which originate from them.
Different from detecting image edges, which can use color, texture
or other features, the flow field has few cues, the intensity (each
flow vector of u and v can be treated as intensity) related approach
is an appropriate choice. Brox et al. [21] illustrated that ST is a
well-established tool to analyze structure characteristics of a
vector-valued data set. In the following, we will describe a
multi-scale nonlinear ST, and derive a 3D spatial-scale Harris edge
detector to extract flow edges.

3.1.1. 2D spatial ST
For a matrix-valued data set M(x, y), the ST of M(x, y), S is

defined as the outer product of gradient vector ∇MU∇MT with a

Fig. 1. Comparison of the EPE accuracy (left) and time consumption ratio (right) of “ClassicþNL” algorithm with two different MF strategies – MF the Sobel detected edge
parts and MF the full flow field on the Middlebury dataset sequences.
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spatial averaging over a neighborhood around a point Mði; jÞ:
Sði; j;ss;sdÞ ¼ Gði; j;ssÞnðð∇Mði; j;sdÞÞð∇Mði; j;sdÞÞT Þ

¼ Gði; j;ssÞn
M2

x MxMy

MxMy M2
y

2
4

3
5

j ði;jÞ

¼ Gði; j;ssÞnS0 ¼
A B

B C

� �
j ði;jÞ

ð4Þ

where Sði; j;ss;sdÞ is a symmetric, positive semi-definite matrix.
The n denotes the convolution operator. Mx and My are the
derivatives of M in the x- and y-directions, respectively. They
are calculated according to Mx ¼ ∂xðGði; j;sdÞnMði; jÞÞ and My ¼
∂yðGði; j;sdÞnMði; jÞÞ. Gði; j;sdÞ is a Gaussian kernel with standard
deviation sd (sd refers to the local scale). It is used to pre-smooth
the data set before computing the derivatives. S(i, j) is spatially
smoothed according to a Gaussian kernel Gði; j;ssÞ with standard
deviation ss (ss refers to the integration scale) in a local neighbor-
hood (N�N). Due to spatial smoothing, noise is removed. More-
over, the neighboring structure information will be integrated into
the center position (i, j). Since the two convolutions are linear
operators, the ST Sði; j;ss;sdÞ is referred to as a linear ST.

Sði; j;ss;sdÞ can be considered as a covariance matrix of a two-
dimensional distribution of gradient directions in a specified
neighborhood of a point. Local structure information (e.g. orienta-
tion and magnitude) is presented in it. Its eigenvalues (λ1, λ2) are
widely used to analyze the local structures of the data set M(x, y).

The two eigenvalues λ1 and λ2 of the ST are non-negative, and
can be computed by the following:

λ1;2 ¼
ðAþCÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�CÞ2þ4B2

q
2

ð5Þ

The eigenvalues have different characteristics according to
different local structures. For example, if a pixel is close to an
edge, there should be a strong local orientation along the edge,
and one eigenvalue will be large while the other one will be small.

3.1.2. 2D Harris edge detector
Based on the specific characteristics of the eigenvalues, some

edge detectors are proposed to identify edges [28,29]. Due to the
advantages of robustness to rotation, scale and noise, the Harris
detector [29] is still one of the best methods to extract edges. Its
response function is computed as follows:

H ¼ detðSÞ�k trace2ðSÞ ¼ λ1λ2�kðλ1þλ2Þ2 ð6Þ
The parameter k determines the extraction accuracy. The larger
the k, the less sensitive the detector is to identify local structures.
Empirically, k is set between 0.04 and 0.06. By checking the
response value H of each point, edge point is identified if Ho 0.

3.1.3. 3D spatial-scale Harris edge detector
Scale space theory [30] explains that scale is a parameter of the

image resolution. Multi-scale images can be obtained by smooth-
ing the original image with a series of Gaussian kernels GðsÞ with
different standard deviations s. Hence, the deviation s is referred
to scale. Ren [27] was the first to demonstrate that multi-scale
processing significantly improves the image boundary detection.
Liu et al. [28] stated that there is an optimal edge scale for each
edge point. How to determine the optimal edge scale is difficult. In
this work, similar as [28], we extend the spatial 2D edge detector
(Eq. (6)) into scale space, and a spatial-scale 3D Harris edge
detector is constructed. The spatial-scale edge detector should
satisfy the following scale constraint:

∇Mðx; y;sdΓÞ ¼
∂j j∇M j j
∂sdΓ

¼ 0 ð7Þ

Mðx; y;sdÞ (sd ¼ sd1;sd2;sd3;…) is multi-scale and, it is generated
by smoothing M(x, y) with a series of local scale sdΓ

(Γ ¼ 1;2;3;…). Mðx; y;sdΓ ÞjsdΓ
represents the first derivative of

Mðx; y;sdΓÞ. If M(i, j) is an edge point, it should satisfy constraint
Eq. (7). Transforming the zero-crossing ∇Mði; j;sdΓÞ to a local
maximum form gives [28]:

∇MsdΓ ¼ signð∇MsdΓ Þ 1� ∇MsdΓ

maxðabsð∇MsdΓ ÞÞ

� �
ð8Þ

The spatial domain 2D ST can be updated to a spatial-scale 3D
form using the scale information:

Sði; j;ss;sdΓÞ ¼ Gði; j;ssÞnðð∇Mði; j;sdΓÞÞð∇Mði; j;sdΓÞÞT Þ

¼ Gði; j;ssÞn
M2

x MxMy MxMsdΓ

MxMy M2
y MyMsdΓ

MxMsdΓ MyMsdΓ M
2
sdΓ

2
6664

3
7775 ð9Þ

Similar as the 3D spatial-time Harris interest point detector
[31], a 3D spatial-scale Harris response function is constructed as
follows:

HðsdΓÞ ¼ detðSðsdΓÞÞ�k trace3ðSðsdΓÞÞ ¼ λ1λ2λ3�kðλ1þλ2þλ3Þ2
ð10Þ

where HðsdΓÞ is the response function at each local scale sdΓ . It is
the measure of edge saliency. λ1, λ2 and λ3 measure the local
variations in both spatial and scale space. We select k¼0.06 in our
experiments.

Edge detection: At every local scale sdΓ (Γ ¼ 1;2;3;…), we can
obtain a 3D Harris edge response HðsdΓÞ of each point M(i, j).
Based on the characteristic that sharp variations occur along both
scale and spatial directions, we propose the following criterion to
determine edge points.

HðsdΓÞo0
H j sdΓ ¼ 0 & H j sdΓsdΓ o0

(
ð11Þ

HjsdΓ is the first derivative of HðsdΓ Þ with respect to the local scale
sdΓ , and HjsdΓsdΓ is the second derivative of HðsdΓÞ with respect to
local scale sdΓ . This criterion ensures us to detect the strongest
edge points among the scales. In our experiments, we set the
multi-scales sd to [0, 0.5, 0.75, 1.0].

3.2. Nonlinear 3D spatial-scale Harris edge detection

Gaussian smoothing is simple and can be implemented effi-
ciently. However, it will over-blur image details. This drawback can
be overcome by considering both spatial and intensity similarities
between pixels in averaging the weight design. A 2D GBF based
nonlinear ST has been proposed for better corner detection [22].
We apply the GBF strategy to our 3D spatial-scale ST to improve
the performances of edge detection.

The gradient intensity distance for a neighboring pixel
nði0; j0ÞANðMði; jÞÞ (N denotes the neighborhood) to the central
pixel M(i, j) is given by the following:

DgðMði; jÞ;nði0; j0ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMði; jÞx�nði0; j0ÞxÞ2þðMði; jÞy�nði0; j0ÞyÞ2

q
ð12Þ

The spatial distance of a neighboring point nði0; j0ÞANðMði; jÞÞ to
the central point M(i, j) is defined as follows:

DsðMði; jÞ;nði0; j0ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði� i0Þ2þðj� j0Þ2

q
ð13Þ

A bilateral weighting function for each point is constructed as
follows:

BFðss;sgÞj ði;jÞ ¼
WsðDsðMði; jÞ;nði0; j0ÞÞÞWgðDgðMði; jÞ;nði0; j0ÞÞÞ

∑nði0 ;j0 ÞANðMði;jÞÞWsðDsðMði; jÞ;nði0; j0ÞÞ;ssÞWgðDgðMði; jÞ;nði0; j0ÞÞ;sgÞ
ð14Þ
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where the spatial weight Ws and the gradient weight Wg are
defined as follows:

Ws ¼ exp �ðDsðMði; jÞ;nði0; j0ÞÞÞ2
2s2

s

 !
; Wg ¼ exp �ðDgðMði; jÞ;nði0; j0ÞÞÞ2

2s2
g

 !

ð15Þ
A 3D GBF based nonlinear ST can be formed as follows:

BFSði; j;ss;sg;sdÞ ¼ BFðss;sgÞnðð∇Mði; j;sdÞÞð∇Mði; j;sdÞÞT Þ

¼
BFðss;sgÞnM2

x BFðss;sgÞnMxMy MxMsd

BFðss;sgÞnMxMy BFðss;sgÞnM2
y MyMsd

MxMsd MyMsd M
2
sd

2
6664

3
7775 ð16Þ

Using the 3D nonlinear ST to replace the 3D linear ST
Sði; j;ss;sdΓ Þ (Eq. (9)) of the spatial-scale Harris response function
Eq. (10), a nonlinear spatial-scale Harris Edge detector is formed.
Different from Liu et al. [28] who applied a Gaussian smoothing
Gði; j;ssÞ to all nine elements of the 3D ST, we use the GBF Gði; j;ssÞ
to smooth the four spatial gradient elements (Eq. (16)). With this
improvement, the computational complexity is reduced and the
average smoothing is easy to be implemented. Fig. 2 shows the
high performance of our nonlinear 3D Harris edge detector, with
the comparison of three well-known intensity suitable edge
detectors – Sobel detector, Canny detector, and the advanced
Second Moment Matrix (2MM2) detector [32]. The Sobel detector

always neglects some salient edge points, while the Canny
detector and the 2MM2 detector take some high texture points
for edges. Contrarily, our nonlinear 3D spatial-scale Harris edge
detector selects the correct edge points by comparing their
saliency at different scales.

3.2.1. Hybrid GBF and Gaussian filter smoothing (HGBGF) technique
Applying the GBF to substitute the Gaussian filter is a good

measure to treat the drawbacks of the traditional linear ST [22],
however, the runtime drastically increases. To simultaneously
reduce the time consumption while preserving discontinuities is a
hard task. We propose a HGBGF approach to solve the low efficiency
issue. The idea is inspired by Rashwan et al. [33], who used a spatio-
temporal gradient method to classify an image into homogeneous
and textured regions, and smooth image gradients which belong to
different regions with different tensor voting parameters. In this
work, we segment the spatial-scale ST elements into discontinuity
regions and non-discontinuity regions by analyzing the SNR of their
spatial-scale gradients. The GBF is used to smooth the discontinuity
regions while the traditional Gaussian filter is employed to non-
discontinuity regions. This HGBGF technique sharply reduces the
computational time when compare to the GBF technique. As shown
in Fig. 4, the HGBGF based spatial-scale 3D Harris edge detector is
much more efficient than the GBF based spatial-scale 3D Harris
edge detector, more than 40% time is saved.

Fig. 2. From left to right: Detected edges of the ground truth (GT) flow fields of RubberWhale, Grove2 and Cameramotion (frames 49 and 50) sequences with different edge
detectors. First line: detected edges with Sobel detector. Second line: detected edges with canny detector. Third line: detected edges with 2MM2 edge detector. Fourth line:
detected edges with our nonlinear 3D Harris edge detector. Fifth line: GT flow fields of the three sequences.
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3.2.2. Spatial-scale gradient SNR segmentation measure
The spatial-scale gradient of each ST element can be calculated

as follows:

j j∇3M j j ði;jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
yþM

2
sdΓ

q
j ði;jÞ ð17Þ

Next, we calculate the mean μ and the standard deviation δ of
each ST element jj∇3Mjjði;jÞ in a square window (in this work the
window size is set to be 5�5). The SNR of each element is
calculated as follows:

SNR¼ 20U log 10ðμ=δÞ ð18Þ
If an element is located at discontinuity, the change of the local

scale sdΓ causes its scale differenceMsdΓ to be large. Consequently,
the standard deviation δ of its spatial-scale gradient is large,
leading to a small SNR. In turn, if an element belongs to a non-
discontinuity region, its spatial gradient (Mx, My) and scale
difference MsdΓ are small. Consequently, the standard deviation δ
of its spatial-scale gradient is small, resulting in a large SNR. By
setting a proper threshold τ to the SNR, the flow discontinuities
can be well extracted (see Fig. 3). In our experiments, we set τ as
follows:

τ¼ 36þðiScale�1Þ � 9
τ¼ minðτ; SNRÞ

(
ð19Þ

where the iScale is the ordinal number of the selected multi-
scales, min is the minimization operation, SNR is the mean of SNR.
As shown in Fig. 3, our SNR measure can accurately extract the ST
elements which are located at discontinuities.

3.3. Piecewise occlusions detection

The combined flow divergence and pixel projection difference
method is used to detect occlusions [18]:

Occðx; y; tÞ ¼ exp �ðdivðx; y; tÞÞ2
2s2

1

 !
Uexp �ðdifðx; y; tÞÞ2

2s2
2

 !
ð20Þ

where divðx; y; tÞ ¼ ð∂=∂xÞuðx; y; tÞþð∂=∂yÞvðx; y; tÞ, difðx; y; tÞ ¼ I1ðx; y; tÞ
� I2ðxþu; yþv; tþ1Þ, s1¼0.3 and s2¼20. The occlusion weight Occ
(x, y, t) indicates the occlusion status of each pixel. By experimentation
(e.g. Fig. 5.), we find that: if Occ(i, j) (at pixel (i, j)) is large, for example,
it approximates 1, the pixel is non-occluded. If Occ(i, j) is a little bit
smaller, for example, it is smaller than 0.9, the pixel is not seriously
occluded, it may be at the occlusion boundary or may be mistaken by
its neighbors. A few of its neighbors are occluded. If Occ(i, j) is much
smaller than 1, for example, it is smaller than 0.6, the pixel is occluded,
and most of its neighbors are occluded. If Occ(i, j) is very small, for
example, it smaller than 0.15, that means the pixel is seriously
occluded. It is inside an occluded region, and its neighbors in a certain
window are nearly all occluded. Based on this phenomenon, we
classify the flow field vectors into 4 parts by piecewise thresholding
Occ(x, y, t):

Occðx; y; tÞ ¼

NonOcc ðOccðx; y; tÞZ0:9Þ
Occ1 ðOccðx; y; tÞo0:9Þ & ðOccðx; y; tÞZ0:6Þ
Occ2 ðOccðx; y; tÞo0:6Þ & ðOccðx; y; tÞZ0:15Þ
Occ3 ðOccðx; y; tÞo0:15Þ

8>>>><
>>>>:

ð21Þ

Fig. 3. From left to right: Classified discontinuity regions and non-discontinuity regions of the GT flow fields of RubberWhale, Grove2 and Cameramotion sequences with the
SNR segmentation measure. First line: classified regions of the horizontal flow field u. Second line: classified regions of the vertical flow field v.

Fig. 4. Comparison of the time consumption of the HGBGF based and the GBF based 3D Harris edge detectors.
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We dilate the three occlusion parts Occ1, Occ2 and Occ3, respectively,
with three masks 1� 1, 3� 3 and 5� 5 based on the characteristics
we analyzed above. As shown in Fig. 5, the piecewise threshold dilated
occlusion detection method can accurately identify the occlusions of
the flow field.

4. Combined post-filtering

Post-filtering the estimated flow field is a good way to improve
the accuracy. Not only some apparent outliers can be removed,
some inaccurate flow components can also be corrected. For one
estimated optical flow field, most of errors are distributed at the
regions where the values have significant variation [32]. This is
because the variational optical flowmethod is constrained to these
assumptions: Lambertian surfaces with constant illumination
conditions, no spatial discontinuities, and no object is allowed to
be occluded. Hence, improving the performance at edge regions
and occlusions is a suitable way to obtain better result. We
propose a Combined Post-Filtering (CPF) method to handle this
problem. With this method, four benefits are obtained: (1) over-
smoothing is prevented and discontinuities are preserved, (2) by
filtering the selected points rather than the full flow field,
computational time is saved, (3) structure details are well pre-
served and flat regions blurring is avoided, and (4) false flow
vectors at occlusions are further corrected using our BF instead of
the MF.

4.1. Application of the WMF to edges

MF is a good way to remove outliers [14,16], it has the following
properties: (1) choosing an appropriate filter window size (N�N),
and sorting the values of these points – in the window, in an
increasing order. The value of point (i, j) is replaced by the middle
value of the list as the filtered output, (2) there are as many larger
as smaller values than the selected median value in the list (which
means that the MF is constrained to be valid for a symmetrical list,
hence, it is not suited to handle occlusions), and (3) the MF
converges to a periodic solution if recursively executed on the
flow field. Furthermore, when integrating the image and flow
information to construct a weighted version (WMF), the disconti-
nuities are better preserved. Different from [14] who simply
applied the WMF to the Sobel extracted edges, we use the WMF

to the edges which are identified with our nonlinear 3D spatial-
scale Harris edge detector. Due to the better performance of our
detector (see Fig. 2), the post-filtered result is more accurate than
[14]. In practice, a 5�5 mask is used to dilate these detected edges
before filtering.

4.2. Application of the BF to occlusions

MF [19] is effective for a symmetrical data set. Using MF to
simply smooth the occlusions (which are severely asymmetrical),
like [14], will generate some errors. For example, some points at
occlusions which belong to foreground objects or surfaces would
be wrongly replaced by values of the occluded objects or surfaces.
Moreover, the estimated flow vectors are not accurate at occlu-
sions. Because the pixels at the occlusions lack matching informa-
tion – no correspondence is available in other frame, the
variational method assigns the occluded pixels with certain dis-
placement vectors by the diffusion operation. However, the
current variational based diffusion lacks the occlusion handling
mechanism and cannot discriminate the flow influence in the
neighborhood of different regions very well. Therefore, we intro-
duce a BF which can handle occlusions [17] to replace the MF to
deal with these problems.

Xiao et al. [17] proposed a multi-cue driven adaptive BF to
successfully smooth the optical flow field with highly desirable
motion discontinuity preservation, moreover, the occlusions are
properly handled. The average weight is calculated according to
spatial proximity, image similarity, motion similarity, and occlu-
sion status (Eq. (3)). The BF can distinguish incorrect flow vectors
between different regions, and the flow vector of the occluded
pixel (i, j) can be approximated by its neighboring non-occluded
correct vectors, since the neighbors belong to the same surface or
object as the occluded pixel (i, j). Of course, with this improve-
ment, the smoothed result is better than the pure application of
MF (see Fig. 6, Table 1). In our experiments, we set the half filter
size of the BF to 9.

5. Experimental results and performance evaluation

In this section, the proposed algorithm, referred to as “Clas-
sicþCPF”, is compared to both classical and state-of-the-art optical
flow algorithms. Both the proposed algorithm and the other

Fig. 5. Results of the piecewise threshold and piecewise threshold dilated occlusion detection method. First line (from left to right): Occ, Occ1, Occ2 and Occ3. Second line
(from left to right): the dilated Occ, Occ1, Occ2 and Occ3. Third line (from left to right): non-occlusions NonOcc , the GT flow field of RubberWhale sequence, frame 10, and
frame 11.
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algorithms [2,4,5,34] for comparison (their codes are available
online) were implemented in MATLAB. Five most significant
optical flow evaluation datasets are selected for testing: (1) the
Middlebury dataset [2], (2) the UCL GT Optical Flow Dataset v1.2
[3], (3) the MIT motion annotation dataset [35], (4) the Football
sequence [8], and (5) the newest KIT complex outdoor sequences
dataset [36], which include both synthetic and real sequences.
Two standard error measures – the Average Angular Error (AAE)
and the average End Point Error (EPE) are applied to evaluate the
accuracy. All the experiments are performed on a PC with an Intel
Core i5-2410M 2.30 GHz processor and 4 GB memory. For coarse-
to-fine estimation, we execute 3 warping iterations when the
pyramid level is greater than 1, while 5 warping iterations when
the pyramid level equals 1, to save computational time (the 10
warping iterations scheme at each pyramid level of the

“ClassicþNL” algorithm is time consuming). Many more pictures
and experimental results are available at: http://www.projects.
science.uu.nl/opticalflow/.

5.1. Effectiveness of the CPF method

The purpose of the first experiment is to verify the effective-
ness of our CPF method – whether it can both remove outliers and
handle occlusions. Eight synthetic test sequences from the bench-
mark Middlebury dataset [2] are used for evaluation. Table 1
shows the AAE and EPE of the “ClassicþCPF” algorithm and its two
related variations: (1) “ClassicþWMF”, which purely uses the
WMF method to post-smooth the detected flow edges and occlu-
sions and (2) “ClassicþBF”, which purely uses the BF method to
post-smooth the detected flow edges and occlusions. As can be

Fig. 6. Detected edges of the estimated flow fields of the “ClassicþCPF” method. First line: detected edges of sequences Grove2, Grove3, Urban2 and Urban3 with the Sobel
edge detector. Second line: detected edges of sequences Grove2, Grove3, Urban2 and Urban3 with the nonlinear 3D spatial-scale Harris edge detector. Third line: detected
edges of sequences Venus, RubberWhale, Dimetrodon and Hydrangea with the Sobel edge detector. Fourth line: detected edges of sequences Venus, RubberWhale,
Dimetrodon and Hydrangea with the nonlinear 3D spatial-scale Harris edge detector.

Table 1
Comparison of the proposed “ClassicþCPF” method with two post-filtering variations: “ClassicþWMF” and “ClassicþBF”.

Method Urban2 Urban3 Grove2 Grove3 RubberWhale Venus Dimetrodon Hydrangea

ClassicþWMF 1.922/0.207 2.745/0.417 1.367/0.095 4.738/0.454 2.289/0.071 3.230/0.231 2.490/0.128 1.860/0.154
ClassicþBF 2.105/0.262 3.794/0.507 1.508/0.104 5.415/0.529 2.281/0.071 3.318/0.233 2.507/0.127 1.821/0.153
ClassicþCPF 1.866/0.203 2.604/0.402 1.323/0.092 4.686/0.456 2.285/0.071 3.181/0.229 2.491/0.127 1.856/0.154
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seen, the proposed “ClassicþCPF” algorithm attains the best
performance. Table 1 demonstrates that the CPF method really
integrates both the advantages of the WMF which can remove
outliers while preserving the edges, and the advantages of the BF
which can tackle occlusions while preserving discontinuities. For
the sequence which includes lots of occlusions and motion
discontinuities, such as the Urban3, Grove3 and Venus, our CPF
method is even more effective. Specially, for the Hydrangea
sequence, there is no large displacement, no illumination changes,
few noise and high resolution, and plays a whole rotation move-
ment. Hence, errors in the estimated flow field are primarily due
to mismatching (one kind of occlusion [17]). The lowest AAE/EPE
of the “ClassicþBF” method also illustrates that using the BF to
replace the WMF for smoothing occlusions is beneficial and
necessary. In Table 2, we compare the accuracy (AAE and EPE)
and efficiency (time) of four methods: (1) the baseline method
“ClassicþNL”, (2) the method “ClassicþNL-full”, which uses the
WMF to smooth the full flow field, (3) the method “ClassicþCPF
(Sobel)”, which uses the Sobel edge detector instead of our
nonlinear 3D spatial-scale Harris edge detector to extract edges,
and (4) the proposed method “ClassicþCPF”. By comparing results
of the method “ClassicþNL” and the method “ClassicþNL-full”, we
can find that for most of the sequences, like Urban3, Venus,
RubberWhale, Dimetrodon and Hydrangea, the method “Clas-
sicþNL” is more accurate. Most importantly, the efficiency of the
method “ClassicþNL” is much higher (at least 2 time faster, see
Fig. 1 for more detail) than the method “ClassicþNL-full”. There-
fore, post-smoothing the whole flow field is no useful. By compar-
ing results of the method “ClassicþCPF (Sobel)” and the method
“ClassicþCPF”, we can see that the EPE of all the 8 sequences of
the method “ClassicþCPF” is equal or smaller than the method
“ClassicþCPF (Sobel)”. The AAE of the method “ClassicþCPF” is
also more accurate, except for the RubberWhale sequence and the
Dimetrodon sequence. But the AAE difference of the two
sequences between the two methods is nearly the same (less than
0.5% difference). This comparison illustrates that our proposed
nonlinear 3D spatial-scale Harris edge detector is effective. Fig. 6
shows the detected edges of the 8 test sequences by the Sobel
edge detector and our edge detector. The red rectangle highlighted
regions of the 4 sequences can explain why the “ClassicþCPF”
method performs better than the “ClassicþCPF (Sobel)” method:
our edge detector extracts nearly all the significant motion
boundaries, while the Sobel edge detector misses many important
motion boundaries. For the other four sequences (e.g. Venus,
RubberWhale, Dimetrodon and Hydrangea) which without high-
lights, the detected edges by the Sobel detector and the nonlinear
3D spatial-scale Harris detector are similar, their AEE and EPE
between the two methods are approximately the same. Most
importantly, the proposed “ClassicþCPF” method obtains much
more accurate results than the “ClassicþNL” method, especially if

the sequence contains serious occlusions. Such as the Urban2,
Grove3 and Venus, the AAE/EPE is reduced from 2.058/0.216 to
1.866/0.201, from 5.070/0.476 to 4.686/0.456, and from 3.316/0.236
to 3.181/0.229, respectively. The accuracy improvement is about 5%
or more. For the Hydrangea sequence, the result of our “Clas-
sicþCPF” method is lightly worse than the “ClassicþNL” method.
That is because the Hydrangea contains only a few outliers but
abundant of small structures, our nonlinear 3D spatial-scale Harris
detector extracts nearly all its small structural edges, which results
in over-smoothing its some textures and details with the filters. In
contrast, the over-smoothing is reduced in “ClassicþNL” method as
the Sobel detector misses some structural edges (see Fig. 6).
Comparing the AAE/EPE of the “ClassicþNL” method and the
“ClassicþNL” method, we can also find this conclusion. Therefore,
our nonlinear 3D spatial-scale Harris edge detector based CPF
method as well as some other post-smoothing variational methods
are not suitable for the sequence which is of high quality, high
resolution, contains no large displacement, no serious occlusions
and few outliers, but contains plenty of small structures. Thus, for
this kind of sequences, we suggest to post-smooth only some
distinctive motion boundaries, and the detector which extracts
few but significant edges should be used.

To further certify the effectiveness of the CPF method, we test
our “ClassicþCPF” method on two other well-known optical flow
evaluation datasets [35,3], which contains different complex con-
ditions with [2]. The sequences of [35] are reconstructed in
different way with [3]. The supplied GT of [35,3] can be used to
quantitative analyze the performance of our method. Tables 3 and
4 show the AAE/EPE of all the test sequences of [35], and the
majority of test sequences of [3] (the selected sequences can
represent all the sequences on [3]). As can be seen from Table 3,
significant reductions of the AAE and EPE are achieved nearly for
all sequences, except the Toy. The Toy sequence contains similar
conditions as the Hydrangea, which explains why the CPF method
is not beneficial at this moment. In Table 4, except the Cra-
tes1Htxtr2, all the other 15 sequences obtain a more accurate
flow field. This is a noticeable problem which needs us to deeply
study. Since we just set the half filter size of the BF fixed to 9, is not
adaptive. However, like the Crates1Htxtr2 sequence, it contains
large displacements which are more than 50 pixels, hence the
small filtering window size of the BF is not valid. To find an
efficient adaptive method to set the filtering window size is a
promising way to improve the performance of the CPF method.

Fig. 7 shows the visual flow fields of 4 challenging sequences
– Urban3, Venus, drop9Txtr2 and Fish. The Urban3 sequence
contains serious occlusions, small scale moving part and multiple
motion, thus, they cannot be estimated correctly in the baseline
method [14]. In contrast, our method greatly reduces the errors
caused by occlusions, and the shape of the small scale roof
at the top left corner is successfully recovered. Comparing the

Table 2
Comparison of the proposed “ClassicþCPF” method to the methods “ClassicþNL” [14],“ClassicþNL-full” and “ClassicþCPF (Sobel)” in terms of AAE/EPE/time on all eight test
sequences from the benchmark Middlebury dataset [2].

Method Urban2 Urban3 Grove2 Grove3

ClassicþNL 2.058/0.216/8.050 2.590/0.379/7.920 1.491/0.103/10.30 5.070/0.476/9.560
ClassicþNL-full 1.973/0.212/22.18 2.645/0.397/23.02 1.393/0.097/24.69 4.864/0.467/22.80
ClassicþCPF(Sobel) 1.873/0.203/7.330 2.609/0.410/7.430 1.333/0.093/8.501 4.777/0.463/10.01
ClassicþCPF 1.866/0.201/10.25 2.478/0.399/11.50 1.323/0.092/11.05 4.686/0.456/11.75

Hydrangea Venus RubberWhale Dimetrodon

ClassicþNL 1.831/0.151/7.130 3.316/0.236/5.450 2.356/0.073/6.220 2.572/0.131/8.050
ClassicþNL-full 1.902/0.156/17.02 3.435/0.249/11.65 2.378/0.074/16.79 2.624/0.135/17.34
ClassicþCPF(Sobel) 1.877/0.156/5.390 3.211/0.229/3.780 2.277/0.071/4.750 2.485/0.128/5.760
ClassicþCPF 1.856/0.154/8.750 3.181/0.229/6.020 2.285/0.071/9.050 2.491/0.127/9.200
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highlighted regions of the Venus sequence and the drop9Txtr2
sequence, we can see that the CPF method has good performance
to handle occlusions: the lost motion in [14] is correctly estimated
and the mismatching errors are significantly reduced. For the Fish
sequence, the computed flow field of [14] contains excessive noise
and outliers, by contrast, due to the contribution of the CPF
method, the noise and outliers are excellently smoothed out and
the motion boundaries are well preserved.

Fig. 8 shows the evaluation results on the Middlebury optical
flow benchmark [2]. Both the AAE and EPE are ranked 17th among
91 methods. Most importantly, our method outperforms nearly all
the TV-L1 based non-local (NL) methods, such as “Efficient-NL”,
“ClassicþNL”, “NL-TV-NCC” and “Occlusion-TV-L1” in the rank list.
To be more precise, comparing our “ClassicþCPF” algorithm with
the “ClassicþNL” algorithm to the “Urban” sequence, not only the
accuracy is improved (from 3.40/0.52 to 2.85/0.51) the consump-
tion time is greatly reduced (640–972 s), which is nearly 35%.

5.2. Universality of the CPF method

In this experiment, we want to demonstrate that the propose
CPF method is useful for almost all the variational optical flow
methods. Tables 5 and 6 show that when integrating our CPF
method into four classical and state-of-the-art optical flow algo-
rithms (e.g. HS [4], BA [6], DN [7], CP [34]), their performances are
further improved. And the CPF method is especially effective for
the noisy and serious occluded sequences. As shown in
Tables 5 and 6, for the noisy fish and Cameramotion sequences,
and the severely occluded drop9Txtr2 sequence, the results of the
original HS [4] algorithm, BA [6] algorithm, DN [7] algorithm and
CP [34] algorithm are quite inaccurate. The proposed CPF method
smoothes the intermediate flow field during incremental estima-
tion and warping, outliers are removed and occlusions are partially
handled, hence, the flow accuracy is improved. Take the BA [6]
algorithm for example, the AAE of the fish and the drop9Txtr2 is

Table 3
Comparison of the proposed “ClassicþCPF” method to the “ClassicþNL” method [14] in terms of AAE/EPE on all five sequences from the MIT dataset [35].

Method Fish Cameramotion Table Hand Toy

ClassicþNL 19.988/0.768 6.428/0.572 3.862/1.198 16.228/1.838 2.548/0.562
ClassicþCPF 15.306/0.627 5.785/0.533 3.750/1.140 14.728/1.684 2.621/0.579

Table 4
Comparison of the proposed “ClassicþCPF” method to the “ClassicþNL” method [14] in terms of AAE/EPE on some sequences from the UCL Dataset v1.2 [3].

Method YoesmiteSun GroveSun Crates1 Robot Sponza1 Crates1Htxtr2 Brickbox1t1 GrassSky9

ClassicþNL 3.062/0.157 5.756/0.270 5.006/3.435 8.566/1.471 12.557/1.345 2.339/0.382 0.708/0.239 0.836/0.319
ClassicþCPF 2.705/0.148 5.313/0.248 4.439/3.286 6.225/1.150 11.892/1.274 3.652/1.596 0.618/0.237 0.726/0.306

TxtRMovemet blow1Txtr1 blow19Txtr2 drop1Txtr1 drop9Txtr2 roll1Txtr1 roll9Txtr2 street1Txtr1
ClassicþNL 0.120/0.101 0.535/0.025 1.956/0.187 1.246/0.042 5.240/1.755 0.089/0.002 0.420/0.012 3.464/3.961
ClassicþCPF 0.100/0.097 0.428/0.023 1.609/0.192 1.010/0.041 4.706/2.247 0.076/0.001 0.360/0.011 3.242/4.045

Fig. 7. Comparison of the estimated flow fields (each column, from left to righ) of the proposed “ClassicþCPF” algorithm to the “ClassicþNL” algorithm [14] on sequences
Urban3, Venus, Fish (frames 145 and 146) and drop9Txtr2. First line: estimated flow field with the “ClassicþNL” algorithm. Second line: estimated flow field with our
“Classicþ CPF” algorithm. Third line, GT of these sequences.
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Fig. 8. AAE and EPE on Middlebury test dataset. The proposed method (“ClassicþCPF”) is highlighted.

Table 5
Comparison of the original optical flow algorithms HS[4], BA [6], DN [7]. CP [34]with their improved variations integrated with our CPF method “HSþCPF”, “BAþCPF”,
“DNþCPF” and “CPþCPF” in terms of AAE/EPE on some sequences from Middlebury dataset [2].

Method Urban2 Urban3 Grove2 Grove3 RubberWhale Venus

HS 4.060/0.459 7.520/0.856 2.853/0.204 6.809/0.690 3.798/0.118 5.533/0.337
HSþCPF 2.816/0.269 6.076/0.730 1.685/0.124 5.657/0.536 2.640/0.085 3.754/0.253
BA 2.965/0.376 4.728/0.605 2.492/0.172 6.496/0.660 3.156/0.097 4.752/0.293
BAþCPF 2.011/0.227 4.049/0.513 1.573/0.110 5.410/0.530 2.245/0.070 3.354/0.237
DN 3.865/0.581 11.274/1.191 2.683/0.195 7.014/0.742 4.184/0.130 7.379/0.427
DNþCPF 3.066/0.398 6.373/0.819 1.819/0.131 5.572/0.541 3.450/0.106 6.923/0.380
CP 2.645/0.357 6.155/0.669 2.952/0.211 6.718/0.656 3.988.0.145 4.701/0.330
CPþCPF 2.015/0.226 4.516/0.535 1.663/0.121 5.253/0.510 3.443/0.131 3.627/0.273

Table 6
Comparison of the original optical flow algorithms HS [4], BA [6], DN [7]. CP [34]with their improved variations integrated with our CPF method “HSþCPF”, “BAþCPF”,
“DNþCPF” and “CPþCPF” in terms of AAE/EPE on some sequences from MIT dataset [35] and UCL GT Optical Flow Dataset v1.2 [3].

Method Fish Cameramotion YoesmiteSun Crates1 blow1Txtr1 drop1Txtr1 drop9Txtr2

HS 30.726/1.351 10.848/0.868 5.347/0.259 8.921/4.588 1.691/0.089 3.163/0.140 9.380/2.700
HSþCPF 22.649/ 0.917 8.129/0.673 3.798/0.201 6.049/4.325 0.797/0.050 1.991/0.100 4.695/2.426
BA 23.897/1.050 7.960/0.695 3.594/0.184 10.432/5.066 1.169/0.048 1.900/0.071 7.517/2.922
BAþCPF 12.263/0.537 5.726/0.529 2.778/0.150 7.172/4.840 0.410/0.020 1.183/0.048 3.506/2.861
DN 26.096/1.109 8.978/0.812 3.328/0.170 6.993/2.864 1.760/0.073 3.141/0.122 17.660/5.084
DNþCPF 18.825/0.734 6.479//0.623 2.469/0.130 4.797/2.105 1.003/0.046 2.290/0.088 13.105/3.719
CP 21.457/0.898 9.123/0.801 4.983/0.197 5.989/3.907 1.191/0.066 1.664/0.068 8.435/1.966
CPþCPF 16.163/0.617 6.672/0.635 2.768/0.130 4.495/3.378 0.546/0.043 0.866/0.040 6.477/1.711

Z. Tu et al. / Pattern Recognition 47 (2014) 1926–19401936



nearly twice improved (from 23.897 to 12.263 and from 7.517 to
3.506, respectively) after using of our CPF method.

5.3. Evaluation on real sequences

To further evaluate the performance of the proposed “Clas-
sicþCPF” algorithm, we experiment with some real sequences
from different datasets [2,8,36]. To the best of our knowledge, the
test sequences in this work are the most widely selected compared
to experiments in other optical flow works. These selected real
sequences are obtained with different sensors, different frame
rates and different scenes. They contain different illumination
conditions (e.g. shaded, indoor, outdoor, dimmed light and bright

light), different motions (large displacement, multiple moving
objects) and different depth layers, and each contains a different
challenge. Fig. 9 shows the results of Walking (indoor) and Back-
yard (outdoor) sequences on the Middlebury dataset [2]. For the
Walking sequence, the “ClassicþCPF” algorithm accurately esti-
mates the motion of the human, the motion contours of his hands
and the moving parts of his legs are all well represented. More-
over, his moving shadow is also clearly recovered. In addition, for
the background, the edges of different objects are well preserved.
The shape of the chair can be clearly identified from the oval flow
at the bottom right of the flow field. For the Backyard sequence,
the motion of the Walking boy and the twirl girl are well
estimated. They can be easily distinguished from the flow field

Fig. 9. Estimated optical flow fields on sequences Walking and Backyard with our “ClassicþCPF” method. From left to right: frame 10 of Walking; the estimated flow field of
Walking; frame 10 of Backyard; the estimated flow field of Backyard.

Fig. 10. Visual comparison of the optical flow results between our “ClassicþCPF”method and the MDP-Flow2 [8] method on sequence Football (frames 3 and 4). From left to
right: frame 3; frame 4; the estimated flow field of our method; the estimated flow field of the MDP-Flow2 method.

Fig. 11. The estimated optical flow field on sequence 000018 [36] with our “ClassicþCPF” method. First line: from left to right: frame 10 (left) and frame 11 (right). Second
line: the estimated flow field of our method.
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by their sharp motion boundaries. For the two clasped girls, the
motion boundaries of their head–neck region and the sleeve–arm
region are also well estimated. Although there are some distinctive
errors around their moving feet and legs, the shape and position
can be easily recognized from the recovered flow field. Fig. 10
shows the results of the proposed “ClassicþCPF” algorithm and
the state-of-the-art MDP-Flow2 algorithm [8] (rank 3 at the
Middlebury benchmark) of the Football sequence. It is difficult to
estimate the motion of the player's right foot and the rapid moving
small scale Football due to the large displacement and occlusion.
The MDP-Flow2 algorithm can partially recover the motion of the
right foot and the Football, but the recovered flow field is not clear,
and also some errors are generated below the Football. In contrast,
the quality of the computed flow field with the proposed “Clas-
sicþCPF” algorithm is much higher. The motion contours of the
right hand, right foot and the Football are clearly reflected. Even
the motion of the tiny left fingers which are located at the top
of the head is recovered. Still, it disappears in the flow field
of MDP-Flow2. Figs. 11–13, show three other examples on the
KITTI dataset sequences 000018, 000024 and 000163 [36]. These
sequences contain a type of complexity that is commonly

encountered in outdoor environments. All the visual flow fields of
these examples demonstrate that our method can remove outliers of
the estimated flow field, while preserving the motion boundaries of
the moving objects. Additionally, occlusions can be partially recov-
ered. For instance, in Figs. 11 and 12, the complicated motions of the
obscure trees are clearly reflected. From Fig. 13, we can see that even
the moving shadow of the small scale rider and the bike is correctly
recovered. Also the estimated motion contours of the small scale
windows are sharply enough to be easily identified.

6. Conclusions

This paper presents a novel CPF method to improve the
accuracy of variational optical flow algorithms. It contains two
major steps: flow field edges and occlusions detection, and
smoothing the classified flow field regions with different suitable
filters. In the first step, flow field edges are accurately extracted
with a nonlinear 3D spatial-scale Harris edge detector. The non-
linear 3D Harris edge detector is constructed by introducing scale
information and replacing the Gaussian smoothing with a GBF.

Fig. 12. The estimated optical flow field on sequence 000024 [36] with our “ClassicþCPF” method. First line: from left to right: frame 10 (left) and frame 11 (right). Second
line: the estimated flow field of our method.

Fig. 13. The estimated optical flow field on sequence 000163 [36] with our “ClassicþCPF” method. First line: from left to right: frame 10 (left) and frame 11 (right). Second
line: the estimated flow field of our method.
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Accurately edges identified, as their optimal scales can be deter-
mined due to the multi-scale technique, and the discontinuity
blurring is reduced because the constructed nonlinear ST is
adaptive to local structures. To improve the efficiency of the GBF
based nonlinear ST, a new HGBGF smoothing approach is proposed
by means of a new segmentation method based on spatial-scale
gradient SNR. This segmentation method is used for classifying the
ST elements into discontinuity regions and non-discontinuity
regions. The time consuming GBF is only employed at disconti-
nuity regions, while non-discontinuity regions still apply the
Gaussian filter for smoothing. Furthermore, a piecewise occlusion
detection approach is used for occlusion extraction. Second, the
detected edges and occlusions, and the other flat regions of the
flow field are post-filtered with the WMF, BF and the fast MF,
respectively. Outliers are properly removed and discontinuities are
well preserved. More important, occlusions are partially handled.
In future work, we will focus on improving the CPF method from
three promising aspects: (1) finding a way to adaptively set the
filtering window size, since the fixed size based smoothing fails
when meets with large displacements and large area occluded
conditions; (2) proposing a scheme to adaptively change the ratio
of different filters in the combination, since some sequences are
more suitable to the BF while some sequences are more suitable to
the WMF; and (3) reducing over-smoothing at the small structure
regions by integrating more advanced elements into the filters like
[33], since the WMF and the BF are not good enough to preserve
small edges of the flow field.
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