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a b s t r a c t

Estimating a dense motion field of successive video frames is a fundamental problem in image proces-
sing. The multi-scale variational optical flow method is a critical technique that addresses this issue.
Despite the considerable progress over the past decades, there are still some challenges such as dealing
with large displacements and estimating the smoothness parameter. We present a local intensity fusion
(LIF) method to tackle these difficulties. By evaluating the local interpolation error in terms of L1 block
match on the corresponding set of images, we fuse flow proposals which are obtained from different
methods and from different parameter settings integrally under a unified LIF. This approach has two
benefits: (1) the incorporated matching information is helpful to recover large displacements; and (2) the
obtained optimal fusion solution gives a tradeoff between the data term and the smoothness term. In
addition, a selective gradient based weight is introduced to improve the performance of the LIF. Finally,
we propose a corrected weighted median filter (CWMF), which applies the motion information to correct
errors of the color distance weight to denoise the intermediate flow fields during optimization.
Experiments demonstrate the effectiveness of our method.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Motion in the form of optical flow is one of the most significant
bottom-up cues for various computer vision and image processing
tasks. Horn and Schunck (HS) [1] proposed a variational method to
compute optical flow based on a brightness constancy assumption
(BCA) constraint. This single constraint is insufficient to determine
two unknown components of the motion field, which is termed
the aperture problem. In particular, this problem denotes the
ambiguity in motion perception, i.e. the direction of the motion is
ambiguous. For a given pixel one first image, there could be many
correspondences in the subsequent image. To solve this problem,
Horn and Schunck introduced a smoothness termwhich integrates
information from the entire image. A parameter λ was used to
control the balance of these two terms.

Estimating dense flow fields in realistic videos presents many
challenges, which causes the variational method to suffer from a
significant deterioration [2]. For example, multiple moving objects
could occlude each other and the HS model lacks robustness to
handle occlusions and motion discontinuities. Second, illumination
onal program COMMIT
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changes and motion blur seriously violate the BCA. Third, when dis-
placements are larger than the object structure, matching typically
fails due to the limitations of Taylor expansion. Finally, different types
of video frames might have different qualities and a fixed smoothness
parameter is therefore an unsuitable factor to balance the data and
smoothness terms. The selection of an appropriate λ is important but
difficult [3,4]. In this paper, we address these two problems and
present a weighted local intensity fusion (WLIF) method to handle
both in a unified way.

Multi-scale variational optical flow methods that employ a
coarse-to-fine strategy [5,6] have become the predominant way to
estimate a dense motion fields. These methods can deal with large
displacements but have difficulty estimating motion details in the
presence of large displacements [7]. The basic sub-sample manner
reduces the size of the image structures and the displacements,
which causes some motion details to be removed. In the refine-
ment process, the inaccurate initialization propagated from the
coarse level leads to incorrect motion estimation at finer levels.
Therefore, the motion of small structures with large displacements
cannot be estimated accurately at the final scale. Recently,
matching information [8,9] is introduced to integrate with the
variational method to handle this problem. However, nearly all of
the work suffers from difficulties with small displacements.
Inspired by the FusionFlow method [10], the local data fidelity
method [4] and the weighted root mean square (WRMS) method
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Fig. 1. Comparison of our CWMF with the traditional WMF. (a) Selected edge pixel (216,42). (b) Horizontal GT motion difference uD in its filtering window. (c) Standard
deviation σI of WMF. (d) Color weight wI of WMF. (e) Our adaptive standard deviation σAI. (f) Our corrected color weight wAI.
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[11], we use the WLIF to fuse multiple flows of different λ to form a
single, improved flow estimation.

Applying a median filter (MF) [12,13] to intermediate flow values
during optimization is helpful to improve the accuracy of the esti-
mated flow field. However, the MF over-smoothes some details,
especially small structures and corners. Sun et al. [14] proposed a
weighted version to handle the over-smoothing problem. Unfortu-
nately, the weighted median filter (WMF) has one crucial drawback:
the color measure does not always coincide with the motion mea-
sure (see Fig. 1). Accordingly, the color measure deteriorates the
performance of the WMF. To address this, we use the motion infor-
mation and present a corrected weighted median filter (CWMF).

We make the following two contributions in this work:

1. Weighted local intensity fusion (WLIF): To handle large dis-
placements and estimate the smoothness parameter simulta-
neously, we present a local intensity fusion (LIF) method to deal
with both in a unified framework. To further improve the fusion
performance, we use selective gradient magnitude as the
weight to LIF. The WLIF reduces errors of LIF that are caused by
outliers and occlusions.

2. Corrected weighted median filter (CWMF): To reduce the error of
the color distance weight, we first find the points whose color
similarity is in conflict with their motion similarity in the fil-
tering window. Then, the motion of these points is used to help
correct their color weights.
The remainder of the paper is organized as follows. We first
review related work on dense optical flow estimation. Section 3
describes our approach. We then evaluate our method qualita-
tively and quantitatively and conclude in Section 5.
2. Related work

The variational method of Horn and Schunck [1] combined
with a coarse-to-fine warping strategy [6] has become the pre-
dominant approach to compute optical flow. Although advances
have been made in recent years, the variational framework has
difficulty to obtain good results in challenging situations such as
those with occlusions [15], illumination changes [16–18], motion
discontinuities [19,20], large displacements [21,22] and real-time
computation [23–25]. As the image resolution of consumer video
cameras is consistently increasing, large displacement is an
important factor in dense motion estimation.

To address the large displacement problem, virtually all varia-
tional methods adopt a coarse-to-fine warping strategy. This
strategy has difficulty in recovering the motion of structures
whose scale is smaller than their displacement [26]. One reason is
that linearization of the data term with the Taylor expansion is
only accurate for small motions. Alvarez et al. [27] addressed this
problem by applying a linear scale-space focusing scheme to avoid
converging to incorrect local minima. This method only partially
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treats the large displacement issue as it still depends on sub-
sample warping. Steinbruecker et al. [28] presented a scheme to
avoid both linearization and warping. Their algorithm requires an
exhaustive search for pixel-level candidate matching, which is too
computational expensive to make the estimation intractable.
Rhemann et al. [29] proposed a fast edge-preserving filter to
smooth the label costs to ensure that flow field contain both fine
structures and large displacements. The method does not achieve
sub-pixel accuracy.

Recently, there has been an interest in using feature matching to
assist the variational methods to handle large displacements. The
SIFT-flow method [30] uses SIFT [31] descriptors to compute a
dense scene flow field. Since this method fully depends on SIFT
descriptors, it performs poorly at small-motion regions [9]. Brox
et al. [32] modified [30] by only considering the best matches
among the detected range of features. This method has some issues.
First, the local descriptors are reliable only at salient locations and
are locally rigid. Second, there can be false matches. Stoll et al. [33]
presented an adaptive integration strategy for feature matches to
reduce these false point matches. Weinzaepfel [9] proposed Deep-
Flow which involved dense and deformable matching, to gain per-
formance for fast motion. However, these matching methods still
sustain the problem of false matches and low precision. The fusion
method [10,7] is an alternative way to deal with large displace-
ments. Lempitsky et al. [10] proposed to fuse flow candidates which
are obtained from different flow methods or one flow method with
different parameter settings. This produces a superior flow field.
Derived from the fusion idea, [7] used the selected sparse SIFT
matching and the PatchMatch [34] to find candidates, then fuse
them with the flow proposal. In contrast, [8] utilized approximate
nearest neighbor fields (NNF) to compute an initial motion field
which contains different types of correspondence information, and
then fuses it with the variational flow candidate for refinement.
However, their fusion method (quadratic pseudo-boolean optimi-
zation, QPBO [35,36]) has some drawbacks: its submodularity
constraint imposed on the pairwise terms is hard to fully meet, and
the constraint is not suitable for variational optical flow models.

Estimating the smoothness parameter λ to obtain an optimal trade-
off between the data and smoothness terms is of crucial importance.
Inspired by the Optimal Prediction Principle (OPP) technique [3] which
automatically determines the optimal smoothness parameter, [4]
presented a local data fidelity method to fuse optical flow estimates of
different smoothness. The local evaluation in terms of the best data fit
on the gradient images is easily affected by illumination changes, and
is sensitive to noise and discontinuities. Tu et al. [11] proposed a
weighted root mean square (WRMS) error method to handle this
problem but this is a global measure. The obtained “optimal”
smoothness λ is not always the best for each point.

Applying a median filter (MF, [12]) to denoise the flow field is a
good way to improve accuracy although over-smoothing typically
occurs for edges and corners. To prevent this, [14] proposed a
modified weighted median filter (WMF) which relies on the spatial
distance, the color distance and the occlusion state. Unfortunately,
the color distance weight would be harmful when the color
similarity is inconsistent with the motion similarity.

Our work is related to [7] and [8] in terms of fusing flow proposals
obtained with different algorithms to handle both large and small
displacements. The difference is that we utilize the WLIF method
instead of the QPBO method for fusion. Our work is related to [4] in
terms of fusing flow proposals obtained with different smoothness
parameters to get an optimal balance between the data term and the
smoothness term. Again, WLIF is used, this time to replace to local data
fidelity term on the gradient images. We adapt the work of [12,14] by
using CWMF to filter the intermediate flow fields.
3. Weighted local intensity fusion

In this section, we introduce the parts of our algorithm. First, we
describe the NN-field algorithm [8], which formulates the motion
estimation as a motion segmentation. Then, we introduce the mod-
ified ClassicþCPF algorithm [37]. The edge-preserving regularization
and the occlusion-aware refinement are utilized to compute a sub-
pixel motion field. Third, we describe the WLIF method to fuse the
obtained NN-field flow and the sub-pixel flow for continuous flow
refinement. WLIF is also used to fuse flow candidates computed with
different smoothness parameters λ. Finally, we present CWMF, a
method to denoise the intermediate flow fields during optimization.

3.1. The NN-field algorithm

To handle large displacements, PatchMatch [34] corre-
spondences are introduced and the motion patterns are computed
from a noisy nearest neighbor field (NN-field). We then perform
motion segmentation [38] with dominant motion patterns to clean
up the noise. Specifically, the dense motion estimation is for-
mulated as a labeling problem [8]:

Eðu; vÞ ¼
X
x

ρDðI2ðxþwðxÞÞ� I1ðxÞÞþ
X

ðx;x0 Þj xANcðx0 Þ
ρSðwðxÞ�wðx0ÞÞ

s:t: wðxÞAfΩðw1Þ;…;ΩðP1○xÞg ð1Þ
where x¼ ðx; yÞ denotes a point in the image domain Ω.
P ¼ fP1;…; PJg are the dominant projection matrices. wðxÞ ¼ ðu0; v0Þ
is the motion pattern. I1 and I2 are the input images. NcðxÞ denotes
the 4-connected neighbors of x. ρD and ρS are robust functions,
where ρSðxÞ ¼ ρDðxÞ ¼ ρðxÞ ¼ ðx2þξ2Þα;α¼ 0:45; ξ¼ 0:001 [6]. To
better preserve edges, the advanced edge preserving motion
smoothness [8,39] is applied:

ρSðwðxÞ�wðx0ÞÞ ¼ωðxÞρðwðxÞ�wðx0ÞÞ ð2Þ
where ωðxÞ is the simple structure adaptive map that maintains
motion discontinuity [7]:

ωðxÞ ¼ expð� J∇I1 JkÞ ð3Þ
where k¼ 0:8: The NN-field w(x) is computed by optimizing Eq. (1)
using [8]. The wðxÞ will be combined with the variational flow vðxÞ as
the refined initial flow in our WLIF method. This will be done at each
image level before the first warping during the coarse-to-fine opti-
mization. The wðxÞ supplies accurate dense matching information
between large and small distance patches and the refined fusion flow
contains reliable motion details which can serve as a initialization for
continuous refinement. Hence, the NN-field is helpful in recovering
the motion of structures with displacements larger than their size.

3.2. The modified ClassicþCPF algorithm

We apply the ClassicþCPF algorithm [37] to estimate a sub-
pixel flow field. The CPF (combined post-filtering) is a combined
filtering technique that uses a weighted median filter (WMF), a
bilateral filter (BF) and a fast MF [12] to smooth the detected
edges, occlusions, and flat regions of the intermediate flow field,
respectively. Its energy functional is defined as

Eðu; v;u; vÞ ¼
X
x

ΨDðJ I2ðxþvðxÞÞ� I1ðxÞJ ÞþλΨ SðJ∇vðxÞJÞ
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Table 1
AAE/EPE for the tested sequences from the Middlebury benchmark (no CWMF operations) and comparison with WLIF with different window sizes.

Window Urban2 Urban3 Grove2 Grove3 RubW. Venus Dime. Hydra. Avg.Ratio

3 �3 1.835/0.229 2.748/0.496 1.269/0.090 4.227/0.420 2.132/0.067 2.972/0.219 2.764/0.144 1.895/0.155 1.004/1.006
5�5 1.837/0.230 2.702/0.489 1.269/0.090 4.224/0.421 2.129/0.067 2.959/0.218 2.758/0.140 1.890/0.155 1.000/1.000
7�7 2.113/0.235 2.808/0.500 1.265/0.090 4.261/0.423 2.171/0.068 2.967/0.219 2.781/0.141 1.892/0.155 1.025/1.012
11�11 1.860/0.239 2.676/0.490 1.272/0.090 4.229/0.421 2.132/0.067 2.974/0.219 2.778/0.142 1.905/0.156 1.003/1.007

Table 2
AAE/EPE for the tested sequences from the Middlebury benchmark with four different fusion methods (no λ fusion and no CWMF operations) and the comparison with WLIF.

Method Urban2 Urban3 Grove2 Grove3 RubW. Venus Dime. Hydra. Avg.Ratio

Raket 1.898/0.243 2.939/0.450 1.249/0.088 4.240/0.419 2.090/0.066 2.959/0.220 2.632/0.136 1.885/0.154 1.025/1.032
QPBO 1.880/0.250 3.024/0.558 1.250/0.088 4.285/0.419 2.215/0.069 2.932/0.215 2.613/0.136 1.888/0.155 1.035/1.098
LIF 1.926/0.247 3.012/0.453 1.246/0.089 4.202/0.415 2.121/0.067 2.983/0.221 2.669/0.136 1.881/0.154 1.033/1.035
WLIF 1.908/0.240 2.603/0.416 1.214/0.085 4.202/0.412 2.101/0.065 2.904/0.218 2.605/0.133 1.875/0.152 1.000/1.000
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where vðxÞ ¼ ðu; vÞ denotes the continuous flow field, and median
refers to fast MF calculation. Compared to [37], we use the Matlab
built-in Sobel function to faster extract flow edges. We also replace
the smoothness term of [37] with an advanced edge-preserving
smoothness term [8,39]. To handle occlusions, the occlusion-aware
refinement strategy of [7] is employed. It uses a mapping
uniqueness criterion to detect occlusion.

3.3. Weighted local intensity fusion

The ClassicþCPF algorithm usually performs well for optical flow
computation. However, it fails to recover the motion of structures
with displacements larger than their own scales. The primary reason
for this problem is that the coarse-to-fine based method initializes
with zero motion. Inspired by the idea of FusionFlow [10], the reliable
motion that may derive from the sparse matching [10], patch
matching [7] or dense correspondence matching [8] is integrated into
the continuous flow field to overcome these problems using fusion.

The QPBO [35] fusion is an efficient optimization method to
minimize submodular, binary pairwise MRFs but it has some draw-
backs. First, not all nodes can be labeled using the non-submodular
function. As a consequence, QPBO only partly obtains an optimal
solution. Second, as discussed in [4], to select the optimal flow among
flow candidates, the measure that relies on the variational model (a
composition of a brightness constant data term and a pairwise
smoothness term) is not sufficient. The data term is the intrinsic
characteristic of the optical flowmethod while the smoothness term is
an added constraint. Therefore, the data term is more suitable than the
pairwise variational model for flow candidate selection. However,
QPBO is constrained to be valid only for binary pairwise models.

In line with the local fusion idea of [4], we propose a WLIF
method for fusing:

WLIFðuðxiÞÞ ¼
X

xANðxiÞ
ðJ∇IErrorðxÞJ ÞðI2ðxþCðxiÞÞ� I1ðxÞÞj�� ð5Þ

where xi ¼ ðxi; yiÞ denotes a pixel location, uðxÞ is the fused flow
field, CðxÞ refers to motion candidates (i.e. the NN-field wðxÞ or the
variational flow field vðxÞ), NðxiÞ denotes a local neighborhood of
xi (we set the neighborhood to 5�5, see Table 1 for comparison).
IError is the absolute difference between the warped image I2ðxþ
CðxÞÞ and I1:

IErrorðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI2ðxþCðxÞÞ� I1ðxÞÞ2þξ

q
ð6Þ

where J∇IErrorðxÞJ is the gradient magnitude of IError. ξ¼ 0:001 is a
regularization parameter. To reduce the derivative error due to the
numerical calculation, we introduce the selective gradient tech-
nique of [11] to compute ∇IError. The selective gradient based
magnitude weight J∇IErrorðxÞJ gives higher weights to incorrect
flow vectors and lower weights to correct ones.

The proposed WLIF method is simple. For different flow can-
didates, we compute the WLIF at each pixel location xi, and assign
the flow vector from the candidates with the lowest value at xi as
the final fused flow. During the coarse-to-fine optimization, the
flow values that are propagated from the coarse level will be
corrected, because the useful matching information from the NN-
field is introduced through the WLIF. Due to this improvement, the
motion of structures with large displacements as well as fine
structures with small displacements can be accurately recovered.

The local data fidelity measure of the WLIF method is the
foundation of the optical flow technique, so it can be used to fuse
flow candidates computed in different ways. In this paper, we also
apply the WLIF method to blend flow candidates obtained with
different smoothness parameters into a single flow. Different types
of image sequences as well as different image regions have different
properties and a fixed λ is inappropriate. Therefore, the data term
and the smoothness term should be weighted adjustable. Table 3
and Fig. 2 demonstrate that estimation of λ is very necessary.

3.4. Corrected weighted median filter

Filtering the intermediate flow fields during incremental esti-
mation and warping significantly improves the estimation accu-
racy [12,37]. However, the WMF method [14] has one severe
defect: the color similarity can conflict with the motion similarity.
This causes the color weight to negatively influence the final
weights. To address this, we propose a CWMF method.

The weights of WMF are defined based on the spatial distance,
the color-value distance, and the occlusion state:

wPðx; y; x0; y0Þ ¼ exp �jx�x0 j 2þjy�y0 j 2
2σ2

P

 !
ð7Þ

wIðx; y; x0; y0Þ ¼ exp �j Iðx; yÞ� Iðx0; y0Þj 2
2σ2

I

 !
ð8Þ

wOðx; y; x0; y0Þ ¼ �Oðx0; y0Þ
Oðx; yÞ ð9Þ

w¼wP �wI �wO ð10Þ
where ðx0; y0Þ represents the position of the neighbors of pixel ðx; yÞ
in a local neighborhood. Iðx; yÞ and Iðx0; y0Þ are the color vectors of
ðx; yÞ and ðx0; y0Þ in the Lab space, respectively. σP ¼ 7 and σI ¼ 7 are
the standard deviations. Oðx; yÞ is the occlusion state that is com-
puted following [37].



Table 3
AAE/EPE for the tested sequences from the Middlebury benchmark (no NNF matching fusion and no CWMF operations) and the comparison with WLIF.

Method Urban2 Urban3 Grove2 Grove3 RubW. Venus Dime. Hydra. Avg.Ratio

NoFuse 1.850/0.210 2.455/0.407 1.255/0.094 4.342/0.433 2.159/0.070 3.156/0.230 2.605/0.130 1.896/0.157 1.045/1.052
Raket 1.853/0.208 2.572/0.408 1.284/0.093 4.202/0.412 2.124/0.067 3.150/0.224 2.552/0.133 1.846/0.153 1.013/1.016
QPBO 1.882/0.208 2.443/0.412 1.280/0.092 4.186/0.413 2.175/0.068 3.193/0.227 2.724/0.139 1.891/0.156 1.082/1.026
LIF 1.875/0.210 2.495/0.410 1.293/0.093 4.203/0.415 2.148/0.068 3.147/0.224 2.586/0.140 1.865 /0.163 1.014/1.040
WLIF 1.833/0.207 2.451/0.402 1.280/0.090 4.193/0.403 2.099/0.065 3.142/0.220 2.543/0.133 1.833/0.151 1.000/1.000

Fig. 2. Visual comparison of Army [40] sample frame with different smoothness parameter λ settings. (a) Estimated flow field of λ¼ 0:5. (b) Fused flow field of
λ¼ 0:5;1;3;5;7. (c) Estimated flow field of λ¼ 7. (d) The corresponding λ-field of the fused flow field of λ¼ 0:5 and λ¼ 7, dark represents λ¼ 0:5 and light represents λ¼ 7.
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Fig. 3. Visual comparisonwith four different fusion methods on an Urban3 [40] sample frame (no λ fusion and no CWMF operations). (a)Raket[4], (b)QPBO, (c)LIF, (d)WLIF, and (e)GT.
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To correct the errors of the color weight, we modify the original
formulation with a two-step strategy:

(1) Labeling the problematic pixels: For some motion vectors in the
filtering window, the color similarity is inconsistent with the
motion similarity. We label a pixel as problematic (xl) if it
meets the following conditions:

uDrτ13uDo
meanðNðuDÞÞ

τ2
3 ID4τ2 �meanðNðIDÞÞ ð11Þ

where uD ¼ ju�u0 j is the motion difference between the central
pixel ðx; yÞ and its neighbor ðx0; y0Þ. ID ¼ j Iðx; yÞ� Iðx0; y0Þj is the
corresponding color-value difference. N denotes the local filtering
neighborhood. uDrτ1 is the essential condition of Eq. (11). τ1 and
τ2 are thresholds, we set τ1 ¼ 0:5 based on the notion that if the
motion difference is smaller than 0.5 (half a pixel), their motion is
similar. We empirically set τ2 ¼ 3. Fig. 4 shows the accuracy of the
baseline method ClassicþNL [14] using the proposed CWMF with
a fixed parameter set and varying thresholds τ1 and τ2.

(2) Correcting the color weight of the labeled pixels: The color weight
of the labeled pixels is related to their motion similarity, which
implies that motion information might be used to modify the
incorrect components of the color weight. Essentially, the color
weight relies on two elements: σI and the color-value distance.
Since the color-value distance is fixed, improving σI is the only
valid way to correct the color weight. We introduce motion
information to adaptively change σI to correct the color weight. A
weight wMu in terms of the motion difference uD is added to σI
for the labeled problematic pixels, and it is expressed as

wMuðxÞ ¼ 2ð1=2�uDðxlÞ�1Þ; xAxl

1 otherwise

(
ð12Þ

For one xl in a filtering window, the monotonic decreasing function
wMu gives extra weight to its corresponding σI adaptively (see Fig. 5). To



Fig. 6. Median filtering comparison. (a) Result of the WMF. (b) Result of our CWMF. (c) GT. (For interpretation of the references to color in the text, the reader is referred to
the web version of this paper.)
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avoid wMu to go to infinity when uD equals 0, we set a constraint to uD,
where uD ¼maxðuD; τÞ. The threshold τ is empirically set to 0.005.

The corrected color weight standard deviation is defined as

σAI ¼ σI �wMu ð13Þ
The corrected color weight (CCW) is defined as

wAIðx; y; x0; y0Þ ¼ exp �j Iðx; yÞ� Iðx0; y0Þj 2
2σ2

AI

 !
ð14Þ

Due to the contribution of σAI, the weight of the pixel with a large
color difference and low motion difference can be appropriately
improved compared to [14] (see Fig. 1). The final weight of CWMF
is rewritten as

w¼wP �wAI �wO ð15Þ

Algorithm 1. WLIF-Flow.
Inp
Ou

Pre
for

C

C
en

for
=

ð
i

e

e
ð
ð

=

f

ut: Images I1 and I2
tput: Flow field (u, v)

-compute a NNF ðû; v̂Þ from I1 and I2
l¼ 1 to max_level do

ompute pyramid images lI1 and lI2
ompute pyramid NNF ðlû ; lv̂ Þ
d for

l¼ L to 1 (set L¼max_level) do
nInitializationn=

1Þ Initialize the continuous flow field:
f l¼ L
ðlu; lvÞ ¼ 0
lse
ðlu; lvÞ ¼ resampleðlþ1u; lþ1vÞ
nd if
2Þ Refine the continuous flow field with NNF by fusion:
lu; lvÞ ¼WLIFfðlu; lvÞ; ðlû ; lv̂ Þg
nFlowcomputationwithmethodn=[37]
or k¼ 1 to warp_iteration do
Initialize ðdu; dvÞl;k ¼ 0

Compute ðdu; dvÞl;k by solving Eq. 4)

Update: ðu; vÞl;k0 ¼ ðu; vÞl;k�1þðdu; dvÞl;k

CWMF ðu; vÞl;k0
Recompute ðdu; dvÞl;k after CWMF,

where ðdu; dvÞl;knew ¼ ðu; vÞl;k0 �ðu; vÞl;k�1

Reupdate: ðu; vÞl;k ¼ ðu; vÞl;k�1þðdu; dvÞl;knew
end for

d for
1 www.projects.science.uu.nl/opticalflow/WLIF-Flow/
en

4. Experiments

To evaluate the performance of our proposed WLIF-Flow
algorithm, we perform experiments on two public benchmarks
datasets: Middlebury [40] and MPI-Sintel [41]. In addition, we
demonstrate our approach on challenging sequences [42] to
evaluate the performance in controlling the balance between the
data and smoothness terms in the flow estimation when handling
both large and small displacements.

For sequences where ground truth (GT) is available, we present
quantitative comparisons with state-of-the-art algorithms in
terms of two error measures: average angular error (AAE, [43])
and average endpoint error (EPE, [44]). All experiments are run in
MATLAB on a laptop with an Intel Core i5-2410M 2.30 GHz pro-
cessor and 4 GB memory. Our WLIF-Flow implementation is pub-
licly available.1 Algorithm 1 outlines the general framework of this
method (without λ fusion). In our current CPU implementation,
the whole program takes 380 s to compute a high quality flow
field for an image pair with resolution 640�480, for instance, the
Urban sequence.

4.1. Evaluation of the WLIF approach

We first test the fusion performance of our WLIF approach on
combining flow candidates from different methods. We compare
our WLIF approach with 3 other fusion approaches: the LIF, the
QPBO [35] and the approach of [4]. Table 2 shows the AAE and EPE
achieved by the fusion methods on the Middlebury training set.
From the last column, we see that our WLIF approach yields better
results overall, which means our WLIF approach incorporates flow
candidates more effectively. This is further demonstrated in Fig. 3.
By comparing the labeled areas of the estimated fields, it becomes
clear that our flow field approximates the GT better. Some small
motion details that are missed with other approaches are recov-
ered with the proposed WLIF method. Additionally, discontinuities
are better preserved in our flow field.

We also test the fusion performance of our WLIF approach on
combining flow candidates from different smoothness parameter
settings. The quantitative comparison on Middlebury training
sequences with λ settings of [0.5, 1, 3] is shown in Table 3. The
error statistics display that fusion improves the accuracy of the
estimated flow fields. Our WLIF approach outperforms other
approaches. We show the benefits of our WLIF approach to fuse
flows of different smoothness in Fig. 2. If the selected λ is not
suitable or no fusion is performed, the estimated flow field is
inaccurate. For example, the motion of the small front palm of the
frog is not recovered in Fig. 2(a), and is over-smoothed in Fig. 2(c).
With the application of our WLIF approach, these two problems
are overcome (Fig. 2(b)). Fig. 2(d) reveals that at edge and texture
areas, the flow candidates of small λ are chosen.

Table 4 shows the advantage of our CWMF compared to WMF
[14] by evaluating the sequences from the Middlebury benchmark
quantitatively. Changing the base of the decreasing weight expo-
nential function (see Fig. 5) does not produce large differences. The
weight function 2ð1=2x�1Þ performs slightly better, because the
variable x changes relatively smoothly when it is smaller than 0.5.



Fig. 7. Evaluation of the Beanbags sequence [40] including small objects with large displacements. (a) Frame 11. (b)–(e) Estimated flow fields. (f) Frame 09. (g)–(j) The
corresponding backward warping results based on the flow estimates in (b)–(e), respectively.

Fig. 8. Evaluation of the Backyard sequence [40] including small objects with large displacements and occlusions. (a) Frame 11. (b)–(e) Estimated flow fields. (f) Frame 09.
(g)–(j) The corresponding backward warping results based on the flow estimates in (b)–(e), respectively.

Table 4
AAE/EPE for the tested sequences from the Middlebury benchmark with two different filtering approaches: WMF and CWMF with different monotonic decreasing
exponential functions (no fusion operation).

Method Urban2 Urban3 Grove2 Grove3 RubW. Venus Dime. Hydra. Avg.Ratio

WMF 1.840/0.210 2.445/0.407 1.255/0.090 4.342/0.433 2.159/0.070 3.156/0.226 2.514/0.130 1.896/0.157 1.017/1.026
CWMF(e) 1.844/0.209 2.378/0.391 1.245/0.088 4.397/0.434 2.138/0.067 3.109/0.224 2.497/0.129 1.888/0.155 1.006/1.008
CWMF(2) 1.842/0.208 2.377/0.390 1.243/0.088 4.301/0.427 2.135/0.066 3.109/0.224 2.493/0.127 1.879/0.154 1.000/1.000
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From Fig. 1 we can see why the CWMF is superior to the WMF.
When the color similarity is inconsistent with the motion simi-
larity, the adaptive standard deviation σAI (Fig. 1(e)) will auto-
matically correct the color distance weight (Fig. 1(f)) according to
amend the standard deviation σI (Fig. 1(c)). One edge pixel of
RubberWhale at position (x¼ 216; y¼ 42) is selected for analysis.
Fig. 1(b) shows its horizontal GT motion difference uD in its fil-
tering window (5�5). By comparing Fig. 1(b) with Fig. 1(d), it can
be observed that the color weight wI of the WMF contains many
errors. For some neighbors, such as (x0 ¼ 218, y0 ¼ 45), the motion
difference is very small. This means that they have similar motion,
and the filtering weight between them should be large. But in fact,
their color weight is very small (Fig. 1(d)). This problem is solved
in Fig. 1(f), the corrected color weight wAI now accurately reflects
the weight relationship between the central pixel and its
neighbors. Fig. 6 shows the final filtering results of RubberWhale.
CWMF (Fig. 6(b)) corrects some boundary errors produced by the
WMF (Fig. 6(a)). For example, the boundaries of the light green
semicircle are closer to the GT (Fig. 6(c)) than the WMF.

To evaluate the performance of our WLIF-Flow method on
handling large displacements, we validate it from three aspects:

(1) Large displacement of small objects: Fig. 7 shows the results of
the Beanbags [40] sequence produced by three state-of-the-
art large displacement handling methods: LDOF [32], Clas-
sicþNLP [45] and NN-field [8]. As shown in Fig. 7(e) and
Fig. 7(j), our WLIF-Flow method successfully captures the large
displacements of the small, textureless balls. In contrast, LDOF
[32] (Fig. 7(b) and (g)) fails to recover the motion of the balls,
because the algorithm relies on descriptor matching and it is



Fig. 9. Evaluation of the FlowerGarden sequence including large objects with large displacements. (a) Frame 11. (b)–(e) Estimated flow fields. (f) Frame 01. (g)–(j) The
corresponding backward warping results based on the flow estimates in (b)–(e), respectively.

Fig. 10. Visual comparison of an HumanEva-II sequence [42] with challenging situations. (a) Frame 546. Four flow estimations and the corresponding backward warping
results are shown in (b)–(i).
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hard to extract descriptors of the textureless balls. In Fig. 7(c),
the ClassicþNLP [45] only recovers the motion of one ball.
Moreover, from its corresponding warped image (Fig. 7(h)),
we can see that the estimated flow of the balls is wrong: the
locations of the recovered balls are quite different from the
original input image (Fig. 7(a)). Since the QPBO fusion of the
NN-field [8] is inaccurate, the captured motion of the balls is
not precise and the motion of the right down ball is too dim to
identify (see Fig. 7(d) and (i)).

(2) Large displacement of small objects and occlusions: Fig. 8 shows
another example of small scale objects with large displace-
ments. Additionally, the frames include serious occlusions.
With the application of our WLIF and CWMF approaches, as
well as the occlusion-aware refinement strategy, our WLIF-
Flow method improves the performance of the NN-field [8].
Not only the large displacements of small objects are well
recovered, but also the occlusions are appropriately tackled in
Fig. 8(e) and (j). LDOF cannot estimate the motion of the ball,
and the motion of the legs of the young girl who is embraced
is lost in ClassicþNLP (see Fig. 8(h)).
(3) Large displacement of large objects: Fig. 9 compares our result
with other methods on the FlowerGarden sequence. The LDOF
and NN-field fail to capture motions of the tree. In particular, the
motion of the stump is lost in LDOF. Furthermore, the edges (e.g.
the trunk and the branches) are poorly preserved. In Clas-
sicþNLP, due to the intrinsic limitation of the coarse-to-fine
strategy, many large displacements are incorrectly estimated. As
shown in Fig. 9(c), it is too dim to distinguish whether the
captured flow contains a tree. In contrast, by combining the
continuous flow field and the discrete NN-field properly in terms
of the proposed WLIF, our WLIF-Flow method performs better.
Apart from some errors around the branches, large displace-
ments are well estimated, discontinuities are well preserved and
the redundant error motion is reduced.

4.2. Evaluation of both large and small displacement handling

Fig. 10 gives an example of the challenge HumanEva-II
sequence [42], which contains large displacements of large
objects (e.g. right foot), large displacements of small objects (e.g.



Fig. 11. Two examples on the MPI-Sintel benchmark. Results of training sequences bamboo_2 (top) and market_2 (bottom), frames 10 and 11. From left to right: results of
LDOF [32], ClassicþNLP [45], NN-field [8] and WLIF.

Table 5
Average end-point error (EPE) on the MPI-Sintel test set.

Method WLIF-Flow (Ours) MDP-Flow2 [7] MLDP-OF LDOF [32] ClassicþNLP [45] ClassicþNL [14]

EPE(clean) 5.734 5.837 7.297 7.563 6.731 7.961
EPE(final) 8.049 8.445 8.287 9.116 8.291 9.153
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left hand) and motion blur and occlusions. Fig. 10 (b) and (f) shows
that the LDOF [32] can capture large displacements of the right
foot but fails to capture large displacement of the left hand. The
NN-field [8] is poor at recovering large displacements of the left
foot and also misses some details of the right hand in Fig. 10
(d) and (h). The ClassicþNLP [45] well estimates small displace-
ments (e.g. the right hand), and due to the contribution of the
WMF, motion boundaries are well preserved. However, it performs
poorly when faced with large displacements. For example, in
Fig. 10(g), the warped right foot is far from the ground truth
(Fig. 10(a)).

Moreover, two sequences bamboo_2 and market_2 on the MPI-
Sintel benchmark [41] are selected to test whether the proposed
WLIF-Flow method can both handle large displacements and pre-
serve motion details. Fig. 11 shows that the motion boundaries of
LDOF [32] are too blurry to identify the contents. The ClassicþNLP
[45] is good at computing small displacements. For instance, the
motion of the girl is well estimated. However, for large displace-
ments such as the butterfly (Fig. 11(b)) and the foreleg (Fig. 11(f)), its
performance degrades. Although the NN-field [8] contains a large
displacement handling mechanisms, it also fails to capture the
motion of the butterfly (Fig. 11(c)) and the foreleg (Fig. 11(g))
because of the drawbacks of the QPBO fusion. In comparison, by
integrating both advantages of the ClassicþNLP [45] and the NN-
field [8], our results are much more accurate and the recovered
motion structures are nearly as the same as the actual objects.

Finally, we evaluate our WLIF-Flow method on both the Middle-
bury and the MPI-Sintel benchmarks quantitatively. At the time of
submission, among the published papers, it is ranked 5th on EPE and
8th on AAE of the Middlebury benchmark, and it is ranked 3th on the
clean pass and 5th on the final pass of the MPI-Sintel benchmark.
Some methods only perform well on one benchmark, such as the
MDP-Flow2 [7] performs top on the Middlebury while poorly on the
MPI-Sintel benchmark, and the DeepFlow [9] performs much better
on the MPI-Sintel than on the Middlebury benchmark. Our method
performs equally well on both of benchmarks. Specifically, our
method outperforms related state-of-the-art methods MLDP-OF,
ClassicþNLP and LDOF on the MPI-Sintel (see Table 5).
5. Conclusion

We have introduced WLIF (weighted local intensity fusion), a
method to fuse flow candidates with different algorithms and dif-
ferent smoothness parameter settings. By combining the useful
matching information into the variational optimization framework,
the motion of structures with displacements larger than their own
size can be recovered accurately. Additionally, some motion details
which may be ignored in the traditional coarse-to-fine refinement
can actually be estimated. Furthermore, the blended flow that comes
from different smoothness parameters produced flows achieves an
excellent balance between the data term and smoothness terms. To
improve the performance on median filtering the intermediate flow
field, corrected weighted median filter (CWMF) is proposed. The
adaptive color weight standard deviation is employed to correct the
errors of WMF. Future work includes improving the matching tech-
nique to handle occlusions and to further improve the fusion per-
formance to integrate flow candidates. We are also exploring ways to
reduce the computational load of the algorithm.
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