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The most successful video-based human action recognition methods rely on feature representations ex- 

tracted using Convolutional Neural Networks (CNNs). Inspired by the two-stream network (TS-Net), we 

propose a multi-stream Convolutional Neural Network (CNN) architecture to recognize human actions. 

We additionally consider human-related regions that contain the most informative features. First, by im- 

proving foreground detection, the region of interest corresponding to the appearance and the motion 

of an actor can be detected robustly under realistic circumstances. Based on the entire detected human 

body, we construct one appearance and one motion stream. In addition, we select a secondary region 

that contains the major moving part of an actor based on motion saliency. By combining the traditional 

streams with the novel human-related streams, we introduce a human-related multi-stream CNN (HR- 

MSCNN) architecture that encodes appearance, motion, and the captured tubes of the human-related re- 

gions. Comparative evaluation on the JHMDB, HMDB51, UCF Sports and UCF101 datasets demonstrates 

that the streams contain features that complement each other. The proposed multi-stream architecture 

achieves state-of-the-art results on these four datasets. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The amount of video data available is experiencing explosive

growth due to the ubiquity of digital recording devices and the

popularity of video sharing web sites. The recognition of the ac-

tions and activities of the people in these videos is one of the long-

standing research topics in the computer vision community. It has

been extensively investigated in recent years [1–4] . Action recogni-

tion is the process of labeling video frames with action labels, and

it enables a computer to automatically recognize high-level human

behaviors. Video-based action recognition has attracted increasing

interest in recent years due to its wide range of applications, such

as human computer interaction, video gaming interfaces like Mi-

crosoft Kinect [5] , video surveillance, and health care. 
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Video-based action recognition is a challenging problem [1] .

irst, we face intra-class (different performances within an action

lass) and inter-class (similarities between different action classes)

ariations. Second, environments and recording settings can vary

ignificantly. For example, human localization becomes much

arder in a dynamic, cluttered environment. Third, humans

ypically move considerably, and isolating a specific action perfor-

ance in time is often not trivial. Actions to be recognized are

ften assumed to be already segmented in time, which requires

 separate segmentation process. This may not always be feasible

ue to the difficulty in appearance/motion segmentation. In this

ork, we are concerned with how to accurately detect the human

nd the primary moving body part under challenging conditions.

his is a fruitful way toward robust feature extraction, which

ventually determines the result of action recognition. 

Recently, following their success in static image classification

6] , convolutional neural networks (CNNs) have been extended to

ake into account motion information for use in action recognition

7–10] . Human actions in videos can naturally be viewed as 3D

patio-temporal signals, characterized by the temporal evolution of

https://doi.org/10.1016/j.patcog.2018.01.020
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1 https://github.com/ZhigangTU/HR-MSCNN . 
isual appearance governed by motion [11] . Approaches have been

roposed to learn spatio-temporal features to represent spatially

nd temporally coupled action patterns. One representative work

s [12] , which presents a two-stream CNN architecture. One stream

odels the appearance representation, while the other stream

odels the motion representations from optical flow. These two

epresentations are complementary, and better performance is

btained when combining them. 

Features that encode the region of interest (ROI) of a human

s a whole are considered global features. The ROI is normally

xtracted by leveraging background subtraction or tracking [1] .

s a result, global representations are sensitive to variations in

iewpoint, background motion, noise and illumination changes. Re-

ently, [13] applied selective search [14] to select regions in each

rame, and discard those regions void of motion according to a mo-

ion saliency measure (MSM) based on optical flow. While this ap-

roach overcomes the dependency on background subtraction and

racking, it has some drawbacks. First, there is no suitable method

o select the saliency threshold, which directly affects the selection

f regions that are salient in shape and motion. Second, actions

ith subtle motions could be missed. Third, the selected regions

re not necessarily spatially coherent. 

Cheron et al. [7] take a different approach to extract person-

entered features by first estimating the location of the body joints.

he regions corresponding to four body parts (right/left hand, up-

er/full body) are used to extract motion and appearance features.

ach body part, and the full ROI are encoded as streams in a multi-

tream CNN. The main challenge is to estimate body poses [15] . It

s suggested that the current robustness of algorithms is insuffi-

ient for action recognition [16] . Another limitation is the extensive

omputation load. 

The work presented in this paper builds on these previous

orks, but we aim at robustness and accuracy by improving the

election of human-related regions (HRs) and the processing of

he deep features of the multiple streams. Specifically, we extend

he end-to-end convolutional two-stream network (TS-Net) [17] by

dding four streams that focus on the entire human-body (termed

1, see Fig. 1 ) and the primary moving body part (R2). Our multi-

tream network thus contains three TS-Nets: three motion-related

nd three appearance-related streams. R1 is extracted based on an

mproved Block-sparse Robust Principal Component Analysis (IB-

PCA) method and R2 is detected via a motion saliency measure

hat depends on the obtained object information of IB-RPCA. To

ffectively combine the six streams, we adopt the spatio-temporal

D convolutional fusion approach of [17] . We term our approach

he human-related multi-stream CNN (HR-MSCNN). 

The Block-sparse Robust Principal Component Analysis (B-RPCA)

echnique [18] is employed to detect humans. It is able to cope

ith background motion, illumination changes, noise and poor im-

ge quality in a unified framework. Motion saliency estimation is

pplied to refine the foreground regions, which enforces spatial co-

erence. To improve the performance of B-RPCA, we add a velocity

ngle measure to improve the consistency of the motion direction.

he detected ROI in each frame is the entire human. According to

he obtained motion information, we propose a motion saliency

easure to extract one part where the movement is most distinc-

ive. This secondary ROI can convey highly discriminative informa-

ion, complementary to the ROI of the whole human. 

This paper extends [9] , and presents the following novel contri-

utions: 

• We present an end-to-end convolutional neural network that

considers the regions of a detected person as well as discrim-

inative regions of motion related to the performance of an ac-

tion. 
• We propose a novel method to obtain static and dynamic fea-

tures and exploit a new fusion method to efficiently combine

the information from the six streams for final action prediction.
• We test different object detection and optical flow methods,

and reveal that both the quality of the detected human region

and the input optical flow significantly affect the recognition

performance. 
• We extensively evaluate various aspects of our approach and

compare it with previous algorithms on common benchmark

datasets (i.e., UCF101 [19] and HMDB51 [20] ), where we achieve

state-of-the-art recognition performance. 

The code of our approach is publicly available. 1 

The remainder of the paper is organized as follows. We review

elated work on action recognition in Section 2 . Section 3 describes

he HR-MSCNN framework. The detection of HRs is discussed in

ection 4 . We evaluate our method in Section 5 and conclude in

ection 6 . 

. Related work 

Local, hand-crafted features have long been the dominant tech-

ique for action recognition [11,21] . Local features do not re-

uire the detection of the body and are robust to illumination

hanges, video noise, and cluttered backgrounds. Since video can

nherently be considered as a 3D spatio-temporal signal, extend-

ng 2D spatial image descriptors to 3D spatio-temporal video de-

criptors has been extensively investigated. Among these hand-

rafted spatio-temporal features, improved dense trajectories (iDT)

21] has achieved outstanding performance. It combines three low-

evel descriptors: histograms of oriented gradients (HOG), his-

ograms of optical flow (HOF), and motion boundary histograms

MBH). Once extracted, the local features are then encoded by

ag-of-words or Fisher vectors to produce a global video repre-

entation. One problem with these local features is that they lack

emantics and discriminative capacity [8] . For more realistic and

omplex human actions, the performance of these descriptors of-

en degrades sharply due to the challenges of intra-class and inter-

lass variations [22] . 

Learned feature representations are a promising alternative to

and-crafted features. Since the seminal work of [6] , learning vi-

ual features with CNN has been intensively studied for many

ecognition tasks including image classification [23] , scene recog-

ition [24] , object detection [25] and face recognition [26] . At-

empts have also been made to learn representations with CNNs

or tasks involving the temporal domain, including action recog-

ition [7,13,27,28] . Deep-learned features have shown advantages

ver hand-crafted features. The reason is that large-scale training

atasets allow deep architectures to learn a hierarchy of seman-

ically related convolution filters that increase the discriminative

apability. 

There are two primary strategies used in deep learning to ex-

ract features from video frames. First, 3D CNN [29] learns convo-

ution kernels in the spatial and temporal domains by extending

onventional 2D CNN architectures [6] to 3D. To process the 3D

patio-temporal signals more effectively, Sun et al. [22] exploited a

ew deep architecture. Compared to training the 2D conventional

ernels, it is more complex to train the 3D kernels, and the cur-

ent size and variation of training datasets for action recognition

n videos is insufficient to guarantee good performance. 

The second strategy is a two-stream CNN [12] , which

chieved state-of-the-art performance [8,17,30] . Gkioxari and Malik

13] leveraged object proposals to localize actions. Object propos-

ls are captured per-frame using the selective search strategy [14] .

https://github.com/ZhigangTU/HR-MSCNN
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Fig. 1. HR extraction and resizing on (a) the RGB input image and (b) the motion field. Region 1 (R1) contains the full body, region 2 (R2) the motion salient body part. 
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These are scored by applying spatio-temporal features extracted

from the two-stream CNN, and linked over time through the video.

Motion regions associated to moving body parts can transmit

highly discriminative information, which will result in a more dis-

criminative action representation [28] . In the context of action

recognition, HRs obtained using a pose estimator have been used

by Cheron et al. [7] . Gkioxari et al. [31] exploited a body part-

based method by leveraging CNN features. Gkioxari et al. [32] ap-

plied Region-based Convolutional Networks (R-CNN) [25] to uti-

lize multiple regions for classification. Singh et al. [33] exploited a

Multi-Stream Bi-directional Recurrent Neural Network (MSB-RNN)

for fine-grained action detection in videos. Based on the detected

bounding box of the person, two person-centered streams are

obtained. The method faces two drawbacks. First, the human-

centered region alone is not sufficiently informative to extract fea-

tures for action recognition. Second, the tracker performs poorly in

capturing human bodies in videos. 

In this paper, we focus on robust detection of HRs because

of their demonstrated merits in containing discriminative infor-

mation. Spatio-temporal features are extracted at these detected

regions, similar to the two-stream CNN. We further adopt the

spatio-temporal architecture for TS-Net by Feichtenhofer et al.

[17] to better extract features for action recognition by exploiting

a 3D convolutional fusion followed by 3D pooling at the final

convolutional layer. 

To handle the inability of the TS-Net to model long-range

temporal structure, Long Short-Term Memory (LSTM) can be inte-

grated in the CNN. Ng et al. [34] presented two methods to enable

the TS-Net to make use of full length videos for video classifica-

tion. The first method is temporal feature pooling that exploits

max-pooling of local information over time. The second method is
 a
 RNN that applies LSTM with hidden states evolving with every

ubsequent frame. Donahue et al. [35] designed a Long-term RNN

LRCNN) architecture, where LSTM’s long-term temporal recursion

odels are connected to CNN models. Wang et al. [30] designed

 temporal segment network (TSN) to extract long-term temporal

tructure for action recognition. Additionally, they demonstrated

hat exploiting more input modalities to construct more streams

eads to higher recognition rates. These models that allow for

ction recognition in long videos can be integrated with the

pproach presented in this paper. 

. Multi-stream CNN: Features extraction from HRs 

We propose a multi-stream CNN that consists of three two-

tream networks (TS-Nets), to extract features in those image

egions that contain discriminative information of the action.

ig. 2 outlines the framework of our HR-MSCNN architecture

chematically. We detect two complementary HRs in terms of the

B-RPCA technique and motion saliency separately (see Fig. 1 ).

n each frame, the primary HR (R1), a bounding box around the

etected human, is extracted using IB-RPCA. The secondary HR

R2), a region located within the primary HR, is captured using

ur motion saliency measure. The third region (R3) contains the

ntire input RGB image or optical flow image, which supplies the

lobal spatial context. Based on these three regions, three motion

treams are formulated from the optical flow field, and three

ppearance streams are obtained from the RGB image. Descriptors

re extracted from the streams and fused for video-based action

ecognition. Specially, spatio-temporal 3D convolution fusion is

dopted from the convolutional TS-Net of [17] . 
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Fig. 2. Schematic representation of the HR-MSCNN framework for the three regions R1, R2 and R3. From top to bottom are three TS-Nets, one for each region. Using R1 as 

our example, the three parts of the network, from left to right: 1) 3D convolution fusion and pooling : at the last convolution layer, we fuse the two streams into a spatio- 

temporal stream by utilizing 3D convolution fusion followed by 3D pooling; we perform 3D pooling in the motion network separately. 2) Static and dynamic aggregation : 

after the second fully-connected layer, static frame descriptors f R 1 t are aggregated across all frames into static video descriptor v R 1 sta , and temporal differences of f R 1 t are 

aggregated into dynamic video descriptor v R 1 
dyn 

. 3) Loss fusion : the predictions of R1, R2, and R3 are averaged for final action prediction. 
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.1. CNN descriptors 

To capture the features within our HR-MSCNN, we use the Mat-

onvNet toolbox [36] for the implementation of convolutional net-

orks. A brief description of our training process follows. 

.1.1. Step 1: Processing input data 

To construct a motion-CNN, the optical flow [37] is first cal-

ulated for each pair of successive frames using the method of

38] . The x - and y -components, and the magnitude of the flow

re rescaled to the range of [0, 255]: [ ̂  u , ̂  v ] = γ [ u, v ] + 128 , where

= 16 is the rescale factor. Values outside the range are set to 0.

hen, same as [13] , these components are stacked to form a 3D

mage as the input for the motion-CNN. During training, for each

elected HR, we resize it to 224 × 224 to fit the CNN input layer. To

onstruct a spatial-CNN, each selected HR in the RGB image is also

esized to 224 × 224. 

.1.2. Step 2: Selecting and training CNN models 

One motion model and one appearance model, pre-trained by

17] based on the VGG-16 model [39] are employed to learn six
tream representations of the RGB and optical flow images. The

GG-16 model with 13 convolutional and 3 fully-connected lay-

rs performs better than shallow models such as VGG-f [40] with

 convolutional and 3 fully-connected layers. This results in more

ccurate results (see Table 6 ). 

.1.3. Step 3: Spatial and temporal fusion 

To take advantage of both motion and appearance informa-

ion, we adopt the convolutional TS-Net of [17] . By employing a

ovel convolutional fusion layer (3D convolution and 3D pooling)

17] between the motion-network and appearance-network, we are

ble to learn correspondences between abstract spatial and tem-

oral features. In other words, our network can recognize what

oves where. 

.1.4. Step 4: Aggregation 

As shown in Fig. 2 , our approach employs a novel static and

ynamic aggregation approach to aggregate deep features. We

rst form a video descriptor by aggregating all frame descriptors

f 
R j 
t where Rj represents one HR and t is the frame. One frame 

escriptor f 
R j 

is a 4096-dimensional vector, i.e., the output of the
t 
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second fully-connected layer (FC7). We then formulate the min

and max aggregation by calculating the minimum and maximum

values for each descriptor dimension i ( i ∈ { 1 , . . . , n } , n = 4096 )

over all T frames of the input video: 

m i = min 

1 ≤t≤T 
f R j 
t (i ) 

M i = max 
1 ≤t≤T 

f R j 
t (i ) 

(1)

For the two static video descriptors v r sta , we concatenate the

time-aggregated frame descriptors: 

v R j 
sta (min ) = [ m 1 , . . . , m n ] 

T 

v R j 
sta (max ) = [ M 1 , . . . , M n ] 

T 
(2)

The dynamic video descriptors v 
R j 

dyn 
are obtained by concatenat-

ing the minimum � m i and maximum � m i aggregations of � f 
R j 
t 

v R j 

dyn 
(min ) = [ � m 1 , . . . , � m n ] 

T 

v R j 

dyn 
(max ) = [ � M 1 , . . . , � M n ] 

T 
(3)

where � f 
R j 
t = f 

R j 
t+ � t − f 

R j 
t , � t = 4 is the time interval. 

Finally, for the appearance stream of region Rj , the scores of the

two static video descriptors v 
R j 
sta (min ) and v 

R j 
sta (max ) are weighted

with a ratio v 
R j 
sta (min ) : v 

R j 
sta (max ) = 1 : 4. The scores of two dy-

namic video descriptors are fused in the same way. The scores of

v 
R j 
sta and v 

R j 

dyn 
are combined according to v 

R j 
sta : v 

R j 

dyn 
= 1 : 1. For

the motion stream of region Rj , the prediction is computer simi-

larly. Then, different from [17] , we fuse the predictions of the ap-

pearance stream and the motion stream with a ratio 1 : 1.5 as in

[30] , because features learned from the motion stream are typically

more informative than those of the appearance stream. 

3.1.5. Step 5: Fusion of predictions from HRs 

To obtain the final action classification, we average the predic-

tions of the three different HRs, R1, R2 and R3. 

4. Detection of human-related regions 

Detecting moving objects is an extensively investigated sub-

ject [41] and significant progress has been achieved. Most existing

techniques still face some challenges with complex natural data. In

this work, the B-RPCA technique [18] is employed. We propose a

modified version of B-RPCA, which we call improved B-RPCA (IB-

RPCA), to detect the foreground human in the input image. In ad-

dition, motion saliency is exploited to extract one motion salient

region (MSR) corresponding to the human body detected from the

previous step. 

4.1. Detection of humans 

Since actions are strongly associated with actors, features com-

puted from the detected region around the actor can help in the

recognition of actions, because the location variation from the in-

put representation will be removed [33] . This is especially useful

for actions that are related to human body motion only [42] such

as “Walk-Front” in the UCF Sports dataset, “Sit” and “Stand” in JH-

MDB or to human-object interaction [42] such as “Riding-Horse” in

the UCF Sports dataset or “Swing-baseball” in JHMDB. 

4.1.1. B-RPCA 

To deal with the challenges in detecting foreground moving ob-

jects, Gao et al. [18] imposed constraints on the background. The

background can be identified according to a low-rank conditional

matrix. Mathematically, the observed video frames can be consid-

ered as a matrix M , which is a sum of two matrices: a low-rank
atrix L that denotes the background, and a sparse outlier matrix

 that consists of the moving objects. The foreground moving ob-

ects can be captured by solving the decomposition using robust

rincipal component analysis (RPCA) [43] . More recently, [18] in-

roduced a feedback scheme and proposed a block-sparse RPCA (B-

PCA) technique that consists of a hierarchical two-pass process to

andle the decomposition problem. B-RPCA consists of three ma-

or steps, summarized below to facilitate the later discussion of our

mprovements to B-RPCA. 

Step 1: First-pass RPCA . In this step, a first-pass RPCA at a

ub-sampled resolution is applied to quickly detect the likely fore-

round regions: 

in 

L , S 
‖ L ‖ ∗ + λ ‖ S ‖ 1 , s.t. M = L + S (4)

here ‖ L ‖ ∗ denotes the nuclear norm of the background matrix

 and λ is a regularization parameter that controls the number

f outliers in the RPCA decomposition. The appropriate value is

= 1 / 
√ 

max (m, n ) (where m × n denotes the dimensions of matrix

 ). Eq. (4) presents a convex optimization problem, which can be

olved by applying the augmented Lagrange multiplier (ALM) [44] .

hrough this first-pass RPCA, outliers can be identified and stored

n outlier matrix S . 

Step 2: Motion saliency estimation (MSE) . A motion consis-

ency strategy is used to assess the motion saliency of the detected

oreground regions and the probability that a block contains mov-

ng objects. Pixels within the blocks captured in the first round of

PCA are tracked by optical flow. After tracking, dense point tra-

ectories are extracted. First, trajectories shorter than 10 frames are

emoved. Second, we estimate the motion saliency of the remain-

ng trajectories according to the consistency of the motion direc-

ion [45] . This is beneficial for two reasons: (1) foreground objects

hat move in a slow but consistent manner can be better identi-

ed; (2) small, local motion that comes from inconsistent motions

f the background can be discarded. Most of the non-stationary

ackground motions that were identified and stored in the outlier

atrix S in the first step are removed or suppressed. 

Step 3: Second-pass RPCA . In this step, the λ value is reset ac-

ording to the motion saliency [18] . This ensures that changes de-

ived from the foreground motion can be completely transferred to

he outlier matrix S . The second pass RPCA is implemented as: 

in 

L , S 
‖ L ‖ ∗ + 

∑ 

i 

λi ‖ P i ( S ) ‖ F , s.t. M = L + S (5)

here ‖ · ‖ F denotes the Frobenius norm of the matrix. P i is an op-

rator that unstacks columns of S and returns a matrix that repre-

ents block i . The ALM algorithm is again employed to solve Eq. (5) .

.1.2. Improved B-RPCA (IB-RPCA) 

The MSE operation is effective in filtering out or suppressing

he non-stationary background motions in the video as long as the

bject keeps moving in a way that is spatio-temporally constant.

owever, if the object occasionally stops or moves with a veloc-

ty close to zero, all foreground object pixels will be removed in

he second step of B-RPCA. MSE also requires a significant amount

f time to compute. In particular, when the background contains

on-stationary motions, the computation time will increase expo-

entially. To overcome these difficulties with B-RPCA, we propose

he following improvements: 

1) We relax the minimal length of each trajectory from 10 to

5 frames. This way, sudden stops in the motion of the actor

will be significantly reduced. To avoid noise arising from the

background, we add the motion derivative constraint similar

to MBH [21] . By calculating derivatives of the optical flow

components u and v , the background motion due to locally

constant camera motion will be excluded. 
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Algorithm 2 Improved motion saliency estimation. 

Input : Trajectories X l, j , X l, j+1 , . . . , X l,k 
Output : Selected Trajectories with Motion Saliency 

1) Initialization: P u = N u = P v = N v = 0 

2) Count the consistency of horizontal flow u : 

for t = j : k ; 

if (u t (X l,t ) > 0) & (�θ ∈ [ −π/ 4 , π/ 4]) 

→ P u = P u + 1 

if (u t (X l,t ) < 0) & (�θ ∈ [ −π/ 4 , π/ 4]) 

→ N u = N u + 1 

endfor 

3) Count the consistency of vertical flow v , similar to step (2) 

above. 

4) If either P u , P v , N u or N v is larger than 0 . 8(k − j) , then the 

trajectory l is labeled as belonging to anobject with salient mo- 

tion. Otherwise, the trajectory is marked as inconsistent. 
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2) We enhance the consistency measure of the motion direc-

tion. Not only the direction of u and v along the trajectory,

but also the variation in the direction should be considered.

Hence, we add a velocity angle measure: 

� θ = arctan (u t+1 / v t+1 ) −arctan (u t / v t ) ∈ [ −π/ 4 , π/ 4] (6)

where [ u t , v t ] � = 0. Just like the motion direction consistency

operation, this velocity angle measure is also conducted at

positions where the velocity is non-zero. 

3) If u t and v t satisfy either Eqs. (7) or (8) , we consider the

actor to be stationary between frames t and t + 1 . We then

only perform the first step of B-RCPA to detect the actor in

the RGB images. 

(range (u t ) < T d ) ∧ (range (mG f low ) < T m 

) (7)

(range (v t ) < T d ) ∧ (range (mG f low ) < T m 

) (8)

Here, range ( u t ) denotes the difference between

he maximum and minimum values of u t . mG f low =
 

(u t ) 2 x + (u t ) 2 y + (v t ) 2 x + (v t ) 2 x is the magnitude of the spatial 

radient of the optical flow ( u t , v t ). The thresholds T d and T m 

are

mpirically set to 0.5. For one motion field, if each of its motion

ectors has a motion displacement smaller than a half pixel, we

onsider this motion field as static. 

Algorithm 1 summarize our IB-RPCA method, and

lgorithm 2 describe the most important modification: the

mproved Motion Saliency Estimation. In particular, the details of

lgorithm 2 are expressed as follows: X l, j , X l, j+1 , . . . , X l,k represents

he consecutive position of points along the l -th trajectory from

rame j to frame k . Short trajectories with k − j ≤ 5 are removed.

he motion saliency of the remaining trajectories are calculated

ccording to the consistency of the motion direction in step (2)

f Algorithm 2 . P u and P v denote the number of frames in the

rajectory that have motion in the positive u and v directions,

espectively. N u and N v represent the corresponding counts in the

egative directions. 

lgorithm 1 Improved B-RPCA (IB-RPCA). 

Input : Video frames 

Output : Object boundaries of each frame 

1) Step 1: First-pass RPCA 

2) If u t or v t does not satisfy Eq. 7 or Eq. 8 continue 

else 

Step 2: improved Motion Saliency Estimation ( Algorithm 2 )

Step 3: Second-pass RPCA 

endif 

.2. Selecting motion salient regions (MSR) of humans 

As suggested in [7,13,27] , selecting suitable MSRs of the actor

ody is essential because the movement of some body parts is po-

entially helpful in improving action recognition. This is because

ctions are characterized by the temporal evolution of appearance

overned by actor motion [11] . Some actions are characterized by

he discriminative motion of body parts, such as, “brush-hair” and

clap” in the JHMDB dataset (see Fig. 5 ). Therefore, it is impor-

ant to identify the body parts that are salient due to actor motion.

ased on the captured human information of the IB-RPCA, we in-

roduce a motion saliency measure to select a MSR where the mo-

ion is most distinguishable, see also Fig. 3 . 

First, we extract MSR candidates from the detected human body

ccording to a conditional measure defined as: 

abH ∧(mG f low > AmG f low ) ∧ (m f low > Am f low ) (9)
nd 

(| u | > Au ) ∨ (| v | > A v ) (10)

here LabH denotes the labels of the human body region that were

etected in the previous step. AmGflow is the mean of mGflow over

he spatial domain. mflow is the magnitude of the optical flow ( u,

 ), and Amflow is the mean of mflow. Au and Av are the means of

he horizontal flow u and the vertical flow v , respectively. 

We then discard motion salient candidates whose spatial area

s small. Different body parts have different motion patterns. In

ddition, some background motions around the human body may

e inaccurately identified by IB-RPCA. We thus attempt to remove

hese incorrectly captured background motions using the following

easure: 

SR (i ) > τ (11) 

here i is the index of MSR candidates and τ is a threshold. If

he area of MSR ( i ) is smaller than τ , it will be removed. In this

aper, we empirically set τ = 100 pixels (e.g., the area of a 10 ×
0 region). The third subfigure in Fig. 3 shows that most of the

utliers are suppressed. 

Finally, we capture the two largest MSR candidates in each

rame, where the MSR candidates are detected according to the

ATLAB built-in function Bwlabel that labels connected compo-

ents on our computed binary image. We employ the motion

aliency measure of [13] to select the final MSR by comparing the

ormalized magnitude of the optical flow between these two can-

idates: 

f low m 

(R i ) = 

1 

| R i | 
∑ 

j∈ R i 
f low ( j) (12)

here flow m 

( R i ) is the normalized magnitude of the optical flow in

he i -th MSR candidate. The MSR candidate with largest flow m 

( R i )

s selected. 

. Experiments 

In this section, we evaluate our HR-MSCNN method on four

ublicly available datasets: UCF Sports [46] , UCF101 [19] , JHMDB

47] , and HMDB51 [20] . These challenging datasets are often used

or benchmarking, and we compare against state-of-the-art algo-

ithms. We assess whether IB-RPCA is effective in detecting the

oreground human under complex situations, and whether we can

xtract useful MSRs. We further evaluate whether the secondary

R is complementary to the human body region, and whether it is

ble to enhance the performance. In addition, we evaluate the ef-

ect of the quality of the detected human region and the input op-

ical flow. Testing in MATLAB, with one Titan-X GPU, our method
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Fig. 3. Selection of the MSR in the human body. Left to right: Input RGB image, extracted MSR candidates, small MSR candidates discarded, and the most salient motion 

region. 

Table 1 

Performance with human body regions (R1) captured by different object detection methods on the JHMDB 

dataset. GT denotes the ground truth bounding box. 

Methods R-CNN [25] Faster R-CNN [48] B-RPCA [18] IB-RPCA (Ours) GT 

Accuracy(%) 56.45 57.03 56.16 58.12 60.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Mean average precision (mAP) of HR-MSCNN on the UCF Sports dataset, when using 

each specified optical flow method for the motion inputs. 

Methods MPEG [49] EpicFlow [51] [38] WLIF-Flow [50] 

mAP(%) 80.36 96.21 97.53 98.05 
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can process about 15 frames per second on average on the UCF101

dataset. 

5.1. Datasets 

UCF Sports contains 150 videos of sports broadcasts that are

captured in cluttered, dynamic environments. There are 10 action

classes and each video corresponds to one action. Note that the

other three datastes share this characteristic that each video cor-

responds to a single action. We use the training/testing split from

[46] . 

UCF101 contains 13,320 videos categorized into 101 action

classes. They cover a large range of activities such as sports and

human-object interaction. It is a challenging dataset as the cap-

tured videos vary significantly in scale, illumination, background

and camera motion. The evaluation is reported as mean accuracy

across three splits. 

HMDB51 consists of 6766 action videos of 51 action categories.

The videos are collected from a wide range of sources, including

movies and online videos. We follow the suggested evaluation pro-

tocol and report the average accuracy over the three splits. 

JHMDB , a subset of HMDB51, contains 928 videos of 21 differ-

ent actions. Each action is present in at least 36 and at most 55

video clips. Three training/testing splits are provided in JHMDB,

and the evaluation results are averaged over the three splits. 

5.2. Evaluation of the effect of human detection quality 

To investigate the influence of the captured human body on

the accuracy of action recognition, we compare four object detec-

tion methods including widely used image-based approaches R-

CNN [25] and Faster R-CNN [48] , video-based technique B-RPCA

[18] and our improved version IB-RPCA. We evaluate on the JH-

MDB dataset as it contains actor bounding boxes per frame. Table 1

shows that the action recognition performance largely depends

on the quality of the captured actor region. IB-RPCA outperforms

the original B-RPCA by 1.96%, and outperforms R-CNN [25] and

Faster R-CNN by 1.67% and 1.09%, respectively. The results of R-

CNN [25] and Faster R-CNN demonstrate that the object detection

quality directly impacts the recognition accuracy. Although Faster

R-CNN can extract multiple objects in a static image, it performs

poorly in capturing a single actor consistently across the whole

video. This is due to the lack of enforced temporal consistency.

Actor-tube detector IB-RPCA is therefore more suitable to construct

a human region-based stream for action recognition. 

5.3. Evaluation of the effect of optical flow quality 

In the two-stream framework [12] , Simonyan and Zisserman

demonstrated that temporal ConvNets trained on optical flow out-
erform spatial ConvNets significantly. This confirms that motion

nformation plays a critical role in action recognition. To deeper

nvestigate the importance of motion, we test the influence of the

uality of the input optical flow on the UCF Sports dataset. We

ompare four optical flow algorithms. MPEG flow [49] , which is

fficiently obtained from video decompression directly without ad-

itional cost, is sparse and low resolution. The optical flow al-

orithm of [38] is relatively fast and has decent accuracy. It has

een widely used in action recognition. The WLIF-Flow algorithm

50] is more accurate than [38] but is also computationally more

xpensive. Both methods [38] and [50] obtain sub-pixel accuracy.

e also test EpicFlow [51] , which performs better than [50] on

he large-displacement MPI-Sintel dataset [52] and performs worse

han [50] on the small-displacement Middlebury dataset [53] . This

ethod is as efficient as [38] , but it only delivers pixel-level accu-

acy. 

As shown in Table 2 , the worst quality optical flow, MPEG flow,

roduces the lowest accuracy on action recognition. WLIF-Flow im-

roves the recognition performance of MPEG flow by about 18%,

nd it also performs slightly better than [38] . Although the optical

ow quality of EpicFlow [51] is good, its action recognition accu-

acy is lower than both [38] and [50] . We believe this is because

picFlow does not provide sub-pixel motion information, and it

acks the ability to deal with small motions. We conclude that high

uality optical flow is essential for high-quality video representa-

ions for action recognition. However, it does not seem to be true

hat more accurate optical flow leads to an action recognition per-

ormance gain. When efficiency is not an issue, a flow algorithm

hat is able to preserve small motion details while also handling

arge displacements is most suitable for action recognition. Con-

idering both the optical flow quality and the computational time,

e select the optical flow algorithm of [38] for the remaining ex-

eriments. 

.4. Evaluation on UCF sports 

We now turn to the evaluation of different datasets, starting

ith UCF Sports. Fig. 4 shows the two detected HRs on 6 action

ategories. These actions are recorded in various challenging con-

itions, such as with multiple actors, fast motion, large displace-

ents, occlusion, motion blur, and illumination changes. Our ap-

roach can deal with these challenges. 
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Fig. 4. Results on UCF Sports. In each image, the larger rectangle corresponds to the extracted foreground human body, and the smaller one corresponds to the secondary 

HR. 

Fig. 5. Results on JHMDB. The larger rectangle corresponds to R1, and the smaller to R2. 
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Table 3 summarizes the results of HR-MSCNN using different

ombinations of regions. When comparing the first with the sec-

nd row, we find that R1 and R2 contain different feature informa-

ion. For example, the “SkateBoarding” action is poorly recognized

sing region R1 alone, but region R2 provides more information.

he action can be recognized accurately when using the three re-

ions together. The scene context of the action is preserved owing

o the full frame (R3) as input. R1 and R2 emphasize the actor and

ts motion salient part. In this way, background noise is reduced,

hus discriminative features are obtained from these two seman-

ic cues. When integrating them all, both location-independent

nd location-dependent feature information can be employed. Con-

equently, a gain is achieved, where the video-level mean aver-

ge precision (mAP) on the UCF Sports dataset is increased to

7.53%. 

w  
.5. Evaluation on JHMDB 

Fig. 5 shows the two detected HRs on examples from the JH-

DB dataset. Our detectors again perform well in complex, real-

stic situations. Table 4 shows that different regions play different

oles in action recognition, and combining them increases the ac-

ion recognition performance. The results of 74.6% mAP from All

egions outperforms other approaches by more than 4%. In terms

f accuracy, our approach with All regions again performs best

71.17%, see Table 5 ). 

.6. Comparison with the state-of-the-art 

In this section, we compare the proposed HR-MSCNN approach

ith several state-of-the-art methods. We select methods that are
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Table 3 

Mean average precision (mAP) of HR-MSCNN on the UCF Sports dataset using different region inputs, where R1 denotes the human body 

region, R2 represents the motion salient part of the actor, and R3 is the full frame. 

Regions Div.Side Golf Kick. Lift. Rid.Horse Run Ska.Board. Swing1 Swing2 Walk mAP 

R1 100.0 100.0 100.0 100.0 100.0 63.89 25.00 87.67 100.0 100.0 87.65 

R2 100.0 100.0 52.50 100.0 100.0 63.89 87.67 87.67 100.0 100.0 89.17 

R3 100.0 100.0 52.50 100.0 100.0 63.89 87.67 63.89 100.0 100.0 86.80 

R1 + R2 100.0 100.0 52.50 100.0 87.67 63.89 87.67 63.89 100.0 100.0 85.56 

R1 + R3 100.0 100.0 100.0 100.0 100.0 63.89 52.50 63.89 100.0 100.0 88.03 

R2 + R3 100.0 100.0 100.0 100.0 100.0 29.17 63.89 100.0 100.0 100.0 89.31 

All 100.0 100.0 100.0 100.0 100.0 87.67 100.0 87.67 100.0 100.0 97.53 

Table 4 

Mean average precision (mAP) of HR-MSCNN on the JHMDB dataset using different region inputs. 

Regions R1 R2 R3 R1 + R2 R1 + R3 R2 + R3 All 

Brushhair 80.1 93.6 71.4 81.5 80.8 86.8 92.2 

Catch 56.3 56.8 56.2 52.8 57.7 54.0 57.5 

Clap 65.6 73.7 55.6 57.8 56.4 68.8 73.7 

Climbstairs 61.8 50.1 67.6 54.2 56.8 56.1 59.2 

Golf 88.8 80.8 91.3 90.9 91.3 91.3 91.3 

Jump 47.5 56.4 52.7 57.3 59.8 60.1 64.6 

Kickball 52.1 56.3 59.1 55.5 60.1 56.2 63.7 

Pick 60.1 61.8 60.1 64.6 56.3 64.0 72.2 

Pour 88.0 82.1 97.0 95.7 94.2 93.8 98.8 

Pullup 98.8 98.2 100.0 100.0 100.0 100.0 100.0 

Push 86.8 93.0 88.0 91.2 92.1 88.8 97.6 

Run 56.3 67.7 52.8 57.3 55.5 69.4 72.4 

Shootball 42.4 51.2 45.9 51.6 52.2 52.3 55.0 

Shootbow 82.0 72.9 93.0 91.7 93.6 92.3 94.9 

Shootgun 63.7 66.3 75.1 67.0 67.7 71.8 74.2 

Sit 74.8 68.5 65.6 66.2 61.8 66.4 66.8 

Stand 75.3 70.3 68.8 67.9 68.5 68.2 74.8 

Swingbaseball 66.8 61.8 42.4 50.5 52.2 57.7 65.6 

Throw 10.7 22.5 31.6 21.1 22.5 27.3 43.4 

Walk 86.4 65.6 87.3 87.8 88.0 88.0 88.2 

Wave 59.7 42.4 52.1 67.5 67.0 67.3 61.8 

mAP 66.9 66.3 67.3 68.1 68.3 70.5 74.6 

Table 5 

Accuracy (%) of HR-MSCNN on the JHMDB dataset using different region inputs. 

R1 R2 R3 R1 + R3 R2 + R3 All 

Accuracy(%) 62.98 62.91 63.56 65.83 68.32 71.17 

Table 6 

Performance comparison with state-of-the-art methods on the JHMDB dataset. 

Methods DT [54] SR-CNNs [42] P-CNN [7] A-Tubes [13] MSR-CNN [9] Ours 

Accuracy(%) 56.60 65.51 61.10 62.50 66.02 71.17 
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derived or extended from the classical TS-Net [12] , and which

were tested on the JHMDB dataset. In addition, we compare

against the hand-crafted dense trajectories (DT) of Wang et al.

[54] . Table 6 shows that our method performs best among them.

The accuracy of our method is 14.57% better than DT [54] (71.17%

vs 56.60%), is 5.66% more accurate than SR-CNNs [42] (65.51%),

is 10.1% more precise than Pose-CNN (61.10%), is 8.67% more ac-

curate than Action Tubes (62.50%), and outperforms MSR-CNN

[9] (66.02%) by 5.15%. 

From the comparison with DT, we find that the deep-learned

features outperform the hand-crafted features for action recogni-

tion. We now focus on various deep-learning approaches. The two-

stream semantic region based CNNs (SR-CNNs) algorithm is similar

to our method. It incorporates semantic regions that are detected

by Faster R-CNN [48] into the original two-stream CNNs. Since

this method uses all detected regions, not only the human body

but also other foreground and background regions are used. Fea-

tures extracted in these other regions may negatively impact the
erformance of SR-CNNs. In contrast, our method focuses on the

uman body region and the motion salient body part, where the

eatures in these HRs are beneficial for the task of action recogni-

ion. 

For Pose-CNN, estimating human poses is a challenging task

nd the pose-estimator used in Pose-CNN does not always perform

ell. The object detectors we applied can handle all kinds of chal-

enges in realistic scenes, and can extract the moving actor body as

ell as one of its primary moving body part precisely. Our method

lso outperforms Action Tubes [13] . The experientially selected α
n Action Tubes is a fixed constant, which might not be optimal for

ifferent kinds of videos. Not only some fine-scale moving objects

ould be removed, but also some large-scale moving objects in

hallenging conditions would be incorrectly captured. Compared to

SR-CNN [9] , the network proposed in this paper performs much

etter for three reasons. First, the new framework is end-to-end

earnable. Second, a deeper CNN architecture, VGG-16, is applied

o replace the shallow network VGG-f in [9] . Finally, a spatiotem-

oral 3D Convolutional fusion method is introduced for fusion. 

We also compare our method to recent TS-Net related algo-

ithms on UCF101 and HMDB51. We also integrated the popular

and-crafted iDT features [21] with our deep-learned HR-MSCNN

eatures using late fusion. Table 7 shows that this approach out-

erforms all other methods. Without the integration of iDT, our

ethod performs better than all of them except the TSN (3 modali-

ies) [30] . It was already shown that the BNInception [57] architec-

ure used in TSN is deeper than the VGG-16 network we employ.

ompared to the convolutional TS-Net [17] , we improve by 1.2% on

CF101 and 1.5% on HMDB51. This demonstrates that the exploited

Rs provide additional information. The performance gain of 5.7%
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Table 7 

Performance comparison with state-of-the-art methods on the UCF101 and HMDB51 

datasets. 

Methods UCF101 HMDB51 

iDT + FV [21] 85.9 57.2 

TDD + FV [8] 90.3 63.2 

LRCNs [35] (CaffeNet) 82.9 –

RCNN-LSTM [34] (GoogLeNet) 88.6 –

Multilayer Multimodal Fusion [55] (VGG16, C3D) 91.6 61.8 

Dynamic Image Networks [56] (CaffeNet) 89.1 65.2 

TS-Net [12] (VGG-M) 88.0 59.4 

SR-CNNs [42] (VGG-16) 92.6 –

Conv. TS Fusion [17] (VGG-16) 92.5 65.4 

TSN(3 modalities) [30] (3 modalities, BNInception) 94.2 69.4 

Ours (VGG-16) 93.7 66.9 

Ours (VGG-16 + iDT) 94.5 69.8 
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n UCF101 and 7.5% on HMDB51 over the original TS-Net [12] is

ignificant. We expect this is caused by the more effective f eature

election of the spatio-temporal 3D convolutional fusion technique

tilized in our method, as well as the deeper CNN architecture

e have used. On UCF101, our result is 1.1% more accurate than

R-CNNs [42] , which reveals that the regions detected by our pro-

osed IB-RPCA are more relevant than those detected by Faster R-

NN. From these comparisons, we conclude that exploiting effec-

ive human-related regions and designing efficient techniques to

apture them are promising to improve the performance of action

ecognition in videos. 

. Conclusion 

We have proposed a novel human-related region-based multi-

tream convolutional neural network (HR-MSCNN) for action

ecognition. The idea is derived from the intrinsic characteristic

hat local motion features in the video contribute to the action

abel. By employing an improved version of B-RPCA (IB-RPCA),

he foreground actor can be accurately detected under complex

ealistic situations such as noise, various illumination conditions

nd partial occlusions. Additionally, a simple yet effective motion

aliency measure is used to efficiently extract one region that cor-

esponds to the part of the body with the most discriminative mo-

ion. Evaluation on challenging datasets and comparisons with the

tate-of-the-art demonstrate that our method achieves superior ac-

ion recognition performance on common benchmark datasets in-

luding UCF101 and JHMDB. 

Our work can be further improved. First, the proposed IB-RPCA

pproach is not computationally efficient, and it can be seriously

ffected by background motion. It could therefore be beneficial to

se more effective actor-tube detectors. Also, the moving body part

hat is captured by our motion saliency measure relies on the de-

ected human body. If the detected human is incorrect, the cap-

ured acting body part will consequently also be incorrect. 

Second, the assumption that a single additional HR is optimal

or all action classes is unlikely. We plan to analyze the type and

umber of HRs that can bring the most significant contribution to

ction recognition. Finally, we have used a simple approach to fuse

he predictions from the three regions. A method that is able to

use them adaptively with regard to the characteristics of different

treams might take advantage of complementary and redundant

nformation in each region, and thus improve the final classifica-

ion. 
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