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ARTICLE INFO ABSTRACT

Keywords: Dark video human action recognition has a wide range of applications in the real world. General action
Action recognition recognition methods focus on the actor or the action itself, ignoring the dark scene where the action happens,
Dark video

resulting in unsatisfied accuracy in recognition. For dark scenes, the existing two-step action recognition
methods are stage complex due to introducing additional augmentation steps, and the one-step pipeline method
is not lightweight enough. To address these issues, a one-step Transformer-based method named Dark Domain
Shift for Action Recognition (Dark-DSAR) is proposed in this paper, which integrates the tasks of domain
migration and classification into a single step and enhances the model’s functional coherence with respect
to these two tasks, making our Dark-DSAR has low computation but high accuracy. Specifically, the domain
shift module (DSM) achieves domain adaption from dark to bright to reduce the number of parameters and
the computational cost. Besides, we explore the matching relationship between the input video size and the
model, which can further optimize the inference efficiency by removing the redundant information in videos
through spatial resolution dropping. Extensive experiments have been conducted on the datasets of ARID1.5,
HMDB51-Dark, and UAV-human-night. Results show that the proposed Dark-DSAR obtains the best Top-1
accuracy on ARID1.5 with 89.49%, which is 2.56% higher than the state-of-the-art method, 67.13% and 61.9%
on HMDB51-Dark and UAV-human-night, respectively. In addition, ablation experiments reveal that the action
classifiers can gain >1% in accuracy compared to the original model when equipped with our DSM.

Domain adaption

1. Introduction training data from the bright domain to the dark domain in a coherent

end-to-end learning manner efficiently.

Currently, on the normal action recognition datasets, such as Kinet-
ics (Kay et al., 2017), HMDB51 (Kuehne, Jhuang, Garrote, Poggio, &
Serre, 2011), etc., action recognition methods (Tu et al., 2018, Gao,
Du, & Yang, 2023, Tu, Xie, Dauwels, Li, & Yuan, 2019, Li, Wu et al.,
2022, Liu, Yuan & Tu, 2022) have achieved outstanding performance. It
is mainly due to most of the videos in these datasets being shot under
sufficient lighting conditions, and constrained by the single shooting
environment. However, on challenging dark datasets like ARID (Xu
et al., 2021), their performance is unsatisfactory. The previous ap-
proaches focused more on video action recognition task with adequate
illumination, but there are much fewer studies investigated on dark
or unbalanced illumination conditions. In brief, videos shot in dark
scenes are uneven in color and low quality in brightness. One of the
main challenges for dark video action recognition is the migration of
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Many efforts have been made to handle this challenge. The methods
can be divided into two types based on the model pipeline, i.e. two-step
and one-step, see Fig. 1 for inference. The two-step methods perform
the dark video action recognition task by (1) locally training an image
enhancement model offline to enhance each video frame one by one to
get the new video data in the bright domain, (2) then using the new
enhanced video data to train an action recognition network, individ-
ually. Usually, this kind of approach contains the problems of (a) The
light domain shift and the action recognition step are trained separately
rather than jointly, which disrupts the coherent consistency of the
model’s functionality. For example, Singh, Suman, Subudhi, Jakhetiya,
and Ghosh (2022) first visually enhances all videos in the dataset via
utilizing an image enhancement model (Guo et al., 2020) and min-max
temporal sampling, and then feeds the enhanced data into a classifier
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Fig. 1. Two-step methods involve separately training two models for action recogni-
tion: an image enhancement model for acquiring bright domain video data and an
action recognition model for action classification. This dual-model training is time-
consuming and disrupts the cohesiveness of action recognition in dark environments.
In contrast, by eliminating the redundant stage of acquiring bright domain data and
training a combined model for domain migration and action classification in one-
step, the explored one-step method can effectively boost the inference efficiency and
recognition accuracy.

with multiple backbone fusion for action recognition. Chen, Chen,
Liang, Gao, and Lin (2021) obtains the luminance-enhanced videos
through simple gamma correction, and then extracts the features from
the dark and bright video data in two separate paths to finish the
classification task. The problem of these methods is that the separating
training manner decreases the performance of dark video action recog-
nition. (b) The domain shift part of offline training brings additional
training time and cost. Some methods try to enhance the original data
through target domain data augmentation directly. For instance, Gao,
Guo, Wang, and Zhang (2022) applies an image translation module
to synthesize new data to reinforce training. Shao, Li, Ren, Gao, and
Sang (2020) supplements the synthesized data of the target domain
for network input, and increases the amount of information carried
by the input to implement image dehazing. Domain alignment on
feature space is also a solution. E.g., Liang et al. (2022) constrains the
feature space distribution difference between the original domain and
the target domain, then minimizing the difference to align different
domains. The above-mentioned methods require a large inference time
due to synthesizing the target domain data and training with paired
data.

The one-step methods handle the challenge by training a whole
framework, connecting domain migration and action recognition in
a single pipeline, and removing the offline training phase compared
to the two-step. Some of the existing methods realize the one-step
pipeline through the two-stream strategy, which merges the frame-
enhanced part and uses the bright-dark paired data for training, leading
to increasing the model’s training complexity. For instance, Suman,
Naharas, Subudhi, and Jakhetiya (2023) designs a two-stream network
that includes a dark stream and a light stream, and the light stream
utilizes an image enhanced model to get brighter video frames. But
the concatenation of dark and light features increases the training
cost. Liang et al. (2022) trains the model in a semi-supervised way and
focuses on domain adaptation, where it aligns different dataset domains
through feature normalization. However, Motiian, Piccirilli, Adjeroh,
and Doretto (2017) requires a large normal light dataset as the source
domain, which significantly boosts the complexity of the model. Some
other methods discard the two-stream network, like (Tu, Liu, Zhang,
Mu & Yuan, 2023), cascading the dark enhancement module and the
action classifier, but the enhancement module takes unnecessary light
enhancement iterations which causes the inference efficiency to slow.
In summary, the one-step method addresses the issue of spatiotemporal
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inconsistency in (a) (b), but the problem of low inference speed is
unsolved.

Motivated by these problems of the existing action recognition
methods in solving domain adaptation (dark domain to bright domain),
we propose a one-step Transformer-based dark domain shift for action
recognition (Dark-DSAR) in dark scenes. The proposed Dark-DSAR is
able to conserve the model’s coherence in domain migration from
bright to dark and action classification, accordingly improving the
recognition accuracy and inference speed. Particularly, our Dark-DSAR,
which cascades the Transformer-based action classifier MViTv2 (Li,
Wu et al., 2022) as the backbone, exploiting symmetric CNN pairs
based on Zero-DCE++ (Li, Guo, Loy & Change, 2022) to realize the
illumination domain shift, i.e. the domain shift module (DSM). In short,
DSM first estimates a set of 3-channel enhancement curve parameters
that correspond to the R, G, B channel of the frame respectively, and
then performs light supplement for each pixel of the frame with these
parameters. The step for every pixel is repeated at certain times to
obtain good enhancement, and the curve parameters are shared during
the whole process to reduce the number of model parameters.

In addition to finding the optimal settings for balancing recognition
accuracy and inference speed, we investigated the impact of the spatial
resolution compression ratio and the structural setting of the domain
shift module (DSM) on the model performance. Remarkably, we found
that for the dark action recognition task, high-resolution video is not
necessary. To streamline the model to reduce the number of parameters
and speed up the inference, we filter the raw input information by
resolution compression, which is beneficial for improving efficiency.
Moreover, the adopted Zero-DCE++ (Li, Guo et al., 2022) further
reduces the computation by sharing the iterative parameters of the
enhancement curves. Extensive experiments have been done to verify
the presented model Dark-DSAR, and we also explored the factors that
affect its performance.

The contributions are summarized as follows.

o A cross-domain one-step dark video action recognition method
named Dark-DSAR is proposed, which integrates the illumina-
tion domain adaption and action classification coherently into
a single stage all-in-one task without costly redundant training
consumption.

A domain shift module (DSM) and a spatial resolution compres-
sion phase based on ResKD (Ma et al., 2022) are designed to
reduce the computation cost and network parameters of the pro-
posed model, achieving a lightweight and efficient video enhance-
ment process. Besides, the effect of video resolution on action
recognition accuracy in the low-light environment is explored.
Extensive experiments are conducted to test the performance of
our model Dark-DSAR, where the results demonstrate that Dark-
DSAR obtains superior performance on the task of dark video
action recognition in both accuracy and efficiency.

2. Related works
2.1. Action recognition in the dark video

Most video action recognition algorithms focus on good lighting
conditions. Performing action recognition in dark scenes is challenging,
and some researchers have started to investigate this issue in recent
years. Ulhaq (2018) fusing multiple video stream deep features corre-
sponding to multiple spectra is used to combine visible light sequences
with infrared data features in night vision scenes to improve the
accuracy of action recognition in dark environments, and some similar
works have been investigated (Akula, Shah, & Ghosh, 2018; Anwaar-ul-
Haq, Gondal, & Murshed, 2011; Eum, Lee, Yoon, & Park, 2013; Zhang
et al., 2022). These studies assisted action recognition in low-quality
video with the help of sensor information other than RGB video. These
approaches use additional data which is difficult to obtain significantly
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Fig. 2. Overview the structure of the proposed Dark Domain Shift for Action Recognition model Dark-DSAR, comprising three main parts: video resolution compression, dark
domain shift, and action recognition. These three components are sequentially connected within a coherent stage and trained together as a single entity. The Res Compress
component effectively eliminates the redundant spatial information from the input. The Dark Domain Shift Module (Dark DSM) facilitates the transformation of dark videos into
bright domain by learning parameters associated with the lowlight enhancement curve (LEC). The action recognition backbone performs the task of action classification. A schematic

of the Depthwise Separable Convolution (DSC Conv) is provided in the lower right corner.

increasing the complexity of the process. Some utilize input data from
different modalities to enhance recognition accuracy, e.g. Tu, Zhang, Li,
Chen and Yuan (2023), Zhang, Jia, Xie and Tu (2022) utilize skeleton
information, Tu et al. (2019) employing semantic information to assist
convolutional neural networks for extracting action features. There are
also ways to handle RGB video directly, Hira, Das, Modi, and Pakhomov
(2021) uses image enhancement to first brighten the original domain
data, and then incrementally samples the enhanced image as the out-
put of the action recognition network. Hussain et al. (2023) applies
a lightweight pyramid network for dark video frame enhancement,
and the action features are extracted and classified in the cloud after
completing the pre-processing. Singh et al. (2022) enhances the dark
video by the IEM module, and then feeds the enhanced video frames
into the action classification network ACN for action recognition. The
above methods reduce the requirement of raw data, but cannot achieve
end-to-end model training. The illumination enhancement and action
recognition modules are not a whole and cannot be trained jointly.

Tu, Liu et al. (2023) introduced a novel method for joint light
enhancement and action classification in dark action recognition. How-
ever, this method employs an enhancement model based on depthwise
convolution layers (DW Conv), utilizing 32 channels. Each channel is
convolved individually to extract features, and the output is obtained
by shuffling the channels. This approach leads to computational and
parameter redundancy. The redundancy arises because, firstly, the
luminance enhancement of the RGB video does not require excessive
channel parameters for enhancing each color channel individually, and
high video resolution is not necessary for action classification. Sec-
ondly, the continuous enhancement process lacks parameter sharing,
resulting in redundant parameter quantities. In contrast, our proposed
method is different from those above in that it can be integrated into
various backbones to be trained end-to-end, simultaneously addressing
the issue of parameter and computational redundancy in Tu, Liu et al.
(2023).

2.2. Lowlight image and video enhancement

Enhancement of image and video in low-light environments is ben-
eficial for downstream tasks, e.g. classification, detection, semantic
segmentation, etc. The existing typical low-light image and video en-
hancement methods can be divided into traditional methods (Ma,
Wang, Zhang, & Zhang, 2023) and deep-learning-based methods. The
low-light image enhancement method based on histogram equaliza-
tion (Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, ter Haar
Romeny, Zimmerman, & Zuiderveld, 1987) and Retinex theory (Land
& McCann, 1971) belongs to the traditional method. Histogram equal-
ization is easy to calculate but has low robustness. The method based

on Retinex theory needs to consider the illumination and reflection
conditions, and has a high computational cost (Li et al., 2022).

Deep-learning-based light enhancement methods can be classified
as CNN-based, GAN-based, and Transformer-based according to the
backbones they used. CNN-based methods e.g., Wei, Wang, Yang, and
Liu (2018) and Lin, Zhang, Wang, and Wang (2023) are based on the
Retinex theory (Land & McCann, 1971), which decomposed an image
into reflectance and illuminance images by a decomposition network,
and fed the decomposition to a light adjustment network. The model
is trained using low-light normal-light images. Lv, Lu, Wu, and Lim
(2018) enhanced the image features extracted by convolutional layers
of different depths separately, and finally fused the enhanced results.
Zero-DCE (Guo et al., 2020) is a CNN-based zero-shot light enhance-
ment method that employs a U-Net (Ronneberger, Fischer, & Brox,
2015)-like structure to extract features at different scales and obtains
pixel-level exponential parameters to output enhanced images after
multiple iterations. Zheng, Li, Yang, and Wu (2021) brightened single
images by combining data-driven and model-driven methods rather
than employing complex neural networks. The GAN-based method,
e.g Jiang et al. (2021) is the first approach to achieve light enhance-
ment without using paired images, which applied U-Net (Ronneberger
et al., 2015) as the generator backbone and global-local discrimi-
nator as the training guide, and also introduced the self-regularized
attention mechanism. Recently Transformer has become prevalent and
been applied to various tasks in Computer Vision. The Transformer-
based method (Cui et al., 2022; Xu, Wang, Fu, & Jia, 2022), like
IPT (Cui et al., 2022) used Transformer to learn the mapping relations
among image features to obtain images with a good visual experi-
ence. However, these methods usually cost heavily in computation and
storage.

2.3. Domain shift and domain adaption

Out of the need to improve learning efficiency, when solving some
similar or identical recognition problems, a robust model is expected.
Domain adaptation refers to maintaining the performance of the model
trained on the original domain when transferred to the target domain.
To maintain the performance of the model, we must try to reduce the
difference between the original domain and the target domain, and
knowledge distillation (Hinton, Vinyals, & Dean, 2015) is a kind of so-
lution. Wang and Deng (2018) divided the domain adaptation problem
into two types, i.e. one-step domain adaption and multi-step domain
adaption. The problem from the bright domain to the dark domain we
focus on belongs to the first type, which means the original domain
and the target domain are similar or related, no need to establish an
intermediate domain, and domain adaption can be completed in one
step.
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The one-step domain adaption approach can be classified into
discrepancy-based, adversarial-based, and reconstruction-based cate-
gories (Wang & Deng, 2018). Discrepancy-based (Cai, Wang, He, &
Zhou, 2020; Peng, Hoffman, Yu, & Saenko, 2016) directly uses la-
beled or unlabeled data on the target domain to train the model,
and fine-tunes the network parameters of the existing model to re-
duce the domain bias. The Adversarial-based Ganin and Lempitsky
(2015), Tzeng, Hoffman, Darrell, and Saenko (2015) and Shen, Pan,
Choi, and Zhou (2023) introduces GAN (Goodfellow et al., 2014)-like
domain discriminators and uses the adversarial loss to confound the
decisions of the domain discriminators. Reconstruction-based (Kim,
Cha, Kim, Lee, & Kim, 2017) implements domain adaption with the
aid of data reconstruction in the original or the target domain.

3. Methods

In this section, we describe the proposed model Dark-DSAR in
detail, where Fig. 2 shows its overall framework. Specifically, our
Dark-DSAR is mainly composed of the explored plug component DSM
for light-domain migration and the action classifier MViTv2 (Li, Wu
et al., 2022). Inspired by Li, Guo et al. (2022), we construct a domain
shift convolutional network between the input video and the classifier
to convert the dark domain to the bright domain by learning en-
hanced curve parameter features meanwhile reducing the computation
redundancy.

3.1. Motivations

For dark video human action recognition, we aim to maintain
the performance of the model, which is trained under natural light
conditions, when encountering illumination change. In particular, we
want to address two important issues that the existing methods face.

Complex domain shift stage. The current popular two-step approaches,
such as knowledge distillation based (Tu, Liu, & Xiao, 2022) and image
enhancement based, split dark video human action recognition into two
discrete phases. This manner increases the difficulty and complexity of
model training, where a separate teacher model or image enhancement
model needs to be trained in advance offline.

Redundant computation cost. This problem exists in both the two-
step and one-step methods. For the two-step method, the cost refers
to the additional training stage and the increasing inference time that
comes with it. For the one-step method, the cost mainly comes from the
enhancement module structure, for example, the multiple enhancement
curve iterations in the enhanced network.

As shown in Fig. 1, to solve these two problems, a Dark-DSAR
model is presented, which has two major innovations: (1) Simplifying
the complicated two-step pipeline into a coherent one-step pipeline.
We connect domain migration and action classification as a whole
by flattening the time dimension, which has the benefit of preserving
the coherence of model training to boost recognition accuracy. (2)
Optimizing the computing and inferencing procedure jointly, and we
reduce redundant computation by spatial resolution compression and
light-enhanced network pruning. Details are described below.

3.2. One-step coherence preservation

The key to protecting the coherence of the model lies in the adding
time dimension of the video task compared with the image task. Due
to this, some relevant assumptions for video tasks are necessary.

Temporal consistency (Tu, Liu et al., 2023). The human action scene
of the video subject in a single clip is almost constant, so the magni-
tude change between the background and the identified objects along
adjacent frames is tiny. Meanwhile, the lighting change in the shooting
environment is constrained to the scene, therefore the enhancement
process remains consistent in time, and the output domain of the same
clip is smooth and successive. Noise artifact. The movement of video

Neural Networks 179 (2024) 106622

objects over time in space we consider to be relatively small and slow,

thus only the noise from lighting conditions is taken into account in

the enhancement process, without focusing on the problems e.g. motion

blur and motion artifacts that are associated with high-speed motion.
The input RGB dark video sequence is defined as:

I(x) e R3><T><H><W, (1)

x denotes the pixel of one video frame, T is the number of frames in
each clip, H is the height and W is the width of the video. Unlike
training an additional enhancement module locally, which disrupts
models’ functional succession and is harmful to video action recogni-
tion in the dark environment, we overcome this drawback by taking
the temporal feature into account. Following the prior work Singh
et al. (2022), Tu, Liu et al. (2023), instead of downsampling along
the temporal dimension, i.e., sampling a certain number of frames for
each clip, we concatenate the temporal dimension of the video to its
RGB color representation. I(x) is updated to I'(x) € REH*W  where
C denotes the channel after being flattened. At this point, I’(x) can be
integrated with other backbone networks related to video processing
for joint training, which reduces the training complexity and maintains
a one-step manner. I’(x) is then compressed in the spatial domain
and feds into the domain shift module for extracting the enhancement
curve parameter features (Guo et al.,, 2020) and performing domain
migration.

3.3. Dark domain shift

We propose a dark domain shift component named DSM to im-
plement the domain migration from dark to bright. We find that
the computation cost in Tu, Liu et al. (2023) increases because of
layer-by-layer and pixel-by-pixel convolution with a large number of
video frames, which is detrimental to training efficiency. To solve
this problem, we make some improvements to construct a faster and
lighter-weight structure. Specifically, inspired by the work (Li, Guo
et al., 2022), we replace DW Conv with the lighter Depthwise Separable
Convolution (DSC Conv) (Chollet, 2017). Fig. 3 illustrates the schematic
of the convolution process. Given an input feature map f € REw,
firstly, we perform DW Conv, which uses a 3 x 3 x 1 convolution
kernel for each channel cc to generate a feature map with the same
shape as the input. Secondly, a pointwise convolution (PW Conv)
operation is applied by using a [1 x 1XCxN] convolution kernel to
fuse different channel feature maps on top of the DW Conv output. The
final feature map has the shape [N, h, w]. Finally, the obtained map is
passed through the ReLU (Glorot, Bordes, & Bengio, 2011) activation
layer. DSC Conv eliminates the convolution process of each kernel
across multiple channels, thereby reducing the number of parameters
and computation. Besides, this operation also mitigates the risk of
overfitting.

DSM consists of 7 DSC conv, and its architecture is shown in Fig. 3.
We modify the Guo et al. (2020) component by adjusting the scale
factor at the front of the network to achieve a better match between
the input and the network. DSM has symmetric CNNs similar to the
U-Net (Ronneberger et al., 2015) structure. To endow the model with
multi-scale perceptual capability, the feature maps from symmetrically
located positions are concatenated and used as the input for the next
layer, e.g. DSC Convl & DSC Conv6, DSC Conv2 & DSC Conv5, DSC
Conv3 & DSC Conv4. The output of DSC Conv7 is P(x) which has a
shape of [3, A, w], ranging from —1 to 1. P(x) is the parameter of the
pixel-level enhancement curve. As defined in (2). « is the scale factor. i
denotes the horizontal position of the pixel, j denotes the horizontal
position of the pixel, and color indicates the color channel of the
pixel.

P (x[,j,color)
0<i<h,0<j<w,coloreR,G,B

=DSM (01[ (x(i,j,color))) ’ @

In the process of light domain adaptation, the goal is to convert
darker scenes into brighter ones. To achieve this, we must compress
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Fig. 3. Architecture of the Dark Domain Shift Module. “scaling” indicates the input resizing operation. C represents the number of channels. DW Conv and PW Conv denote
depthwise convolution and pointwise convolution, correspondingly. “LEC param output*” pertains to the output of the internal conv. layer.

the color space with higher color values and extend the color space
with lower color values. During this process, the spatial contrast for
higher color values decreases while the spatial contrast for lower color
values increases. This results in an overall increase in image bright-
ness, completing the brightness conversion. To fulfill this criterion,
the transformation function should mimic a gamma transform with
a gamma value less than 1 while also avoiding the introduction of
undue computational complexity. Therefore, a direct application of the
exponential curve is not suitable. Taking all these considerations into
account, the quadratic parabolic curve is a suitable choice. It is easier
to differentiate compared to the exponential transformation, involves
lower computational requirements, and exhibits a growth pattern sim-
ilar to the exponential transformation, thus ensuring it achieves the
desired brightness transformation.

With P(x), we enhance I’(x) through a quadratic curve represented
by Eq. (3):

E@) =I'(x)+P)I'(x) (1-1'(x), 3)

where E(x) refers to the enhanced result after one enhancement itera-
tion. The quadratic curve employed is differentiable, and the enhance-
ment process involves pixel-wise operations on the feature maps. To
achieve more satisfactory luminance enhancement, we conduct multi-
ple iterations on the feature maps, utilizing higher-order curves based
on Eq. (3). Higher-order curves provide a superior representation of
detailed texture features when compared to lower-order curves, leading
to improved detail estimation and reconstruction. Denote the number
of iterations as ‘n’. Consequently, the result of the nth iteration for
enhancing the feature map with higher-order curves from the n — 1"
can be expressed as Eq. (4):

E"x) = E"'(x) + P)E" ' (x) (1 - E"'(0)) . &)

The number of iterations influences the model’s performance. We
have ultimately chosen to set the iteration parameter at 8. This choice
satisfies the need for illumination supplement in predominantly dark
scenes while maintaining a balance between computational complexity
and enhancement effectiveness. A more detailed explanation of our
choice of iteration parameters will be provided in the experimental
section.

It is important to note that our approach differs from the estimation
curves used in the enhancement model of Tu, Liu et al. (2023). We
employ the exact same pixel-by-pixel enhancement parameter, denoted
as P(x), for each iteration, which means that, as explained earlier the
DSM outputs a 3-channel (for R, G, B) enhancement curve parameter.
In contrast, Tu, Liu et al. (2023) generates 3-channel (totaling 3N
channels) enhancement parameters for every iteration, which possesses
three times as many parameters as our model. Our approach main-
tains a lighter model with fewer parameters while avoiding significant
degradation in performance.

During the backpropagation training of the network, we consider
constraints related to the exposure intensity, the RGB color offset, and
the monotonic relationship between neighboring pixels. Specifically,

we impose these constraints on the DSM using the complete loss func-
tion proposed in Guo et al. (2020). The notation for this loss function
Eq. (5) is defined as Lpgy. Wey, W), and W, are set to 1, 20, and
0.5.

Lpsy = W L

exp~exp

+ VVtva + I/I/colorLe()Ior (5)

The exposure loss, represented by L., quantifies the difference
between the average intensity of a local area and the intensity of a
properly exposed region. Partition each enhanced image into some
16 x 16 regions. Use Y; to represent the average grayscale value of the
ith region, and E to denote the value of appropriate exposure intensity
(set at 0.6 same as Guo et al. (2020)), and K is the number of regions,
the loss L.y, can be expressed as:

~

L ¥~ £ ©)

1
exp =E.
1

The illumination smoothing loss, L,,, promotes uniform lighting across
the image. N is the total iterations of DSM, ( is the color channel space,
P¢ is the enhancement parameter of the cth color channel obtained in
the nth iteration, V, and V, are the horizontal and vertical gradient
respectively:

N
Ly=Y Y (1 VP |+ VP ),

n=1c€eN

2={R,G, B}, @]

On the other side, the RGB color correction loss, L,,,., addresses
color discrepancies by maintain the gray value consistency of different
channels:

Leolor = (JR _"G)2+ (JR_JB)2+ (JB _JG)z’ ®

J is the average intensity of the enhanced result of three channels (R,
G, B channel).

3.4. Action classification

The proposed module DSM can be integrated into any action clas-
sifier for training coherency. Here we utilize MViTv2 (Li, Wu et al.,
2022) as the action classifier baseline. MViTv2 is a video processing
Transformer (Vaswani et al., 2017) backbone with multi-scale feature
stages, that enable spatio-temporal recognition. By incorporating a
multiscale feature pyramid network, cross-attention mechanism, and
class-wise attention mechanism, MViTv2 effectively captures the spatial
and temporal information in videos, making it achieves state-of-the-
art performance for action recognition. The structure of MViTv2 base
(MViTv2-B) is analyzed in Table 1 for reference.

3.5. Resolution compression
In this subsection, we present a qualitative analysis of the rela-

tionship between video resolution and action recognition accuracy.
Low-quality videos or figures have a negative impact on the accuracy
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Table 1

Structure of the MViTv2-B backbone. MHPA refers to the Multi Head Pooling Attention.
MLP denotes the multi-layer perception. “Head Nums” designates the heads in every
basic block for the four stages.

Stage Layers Head nums Output size
input stride4 x 1 x 1 - 3 X 16 x 224 x 224
cubel 3x7x%x7,9 - 96 x 8 X 56 X 56
stride 2 x 4 x 4
sacle2 MHPA() X2 1 96 x 8 x 56 X 56
| MLP(768) |
scale3 MHPA(I) x3 2 192 x 8 x 28 x 28
| MLP(768) |
scale4 MHPAGSY %X 16 4 384 x 8 x 14 x 14
| M LP(1536) |
scale5 MHPA(768) X3 8 768 X 8 X7 X7
| MLP(3072) |
000  rorermimsmsmsmmim e s
e BTop-1
65.00 o e S e e
2 60.00
LR . . R e R
50.00
224x224 112x112 56x56 28x28

Resolution

Fig. 4. Accuracy of Video Swin Transformer on ARID1.5 with different resolution
frames.

of the classification network (Ma et al., 2022) and may appear to be
an intuitive cause of the accuracy decrease. However, this does not
imply that low-resolution videos lack critical information for action
recognition. To elucidate this, we conduct a quantitative analysis of
video resolution in the input network.

Initially, the original video size is uniformly scaled to 224 x 224.
Subsequently, downsampling is performed at various scales to obtain
low-resolution inputs, ie. 112 x 112,56 x 56,28 x 28. Similar
to ReskKD (Ma et al., 2022), we simulate the information loss process
through downsampling and subsequently resize the obtained frames
back to the size of 224 x 224 by using bilinear interpolation. This
approach helps eliminate the influence of video scale changes on
the results. Fig. 4 shows that the decreased resolution of the input
video does not lead to a decline in recognition accuracy (resolution
112 x 112). This observation suggests that the information conveyed
by the low-resolution video is adequate for the classification task.

We optimize the proposed cascade network based on this obser-
vation. In particular, firstly, we introduce a downsampling stage at
the network input to eliminate redundant information presented in
the video. Then, the video is passed through the domain migration
module to enhance its illumination before being fed into the classifier.
Finally, the video is upsampled back to the original input resolution
using double linear interpolation to preserve scale invariance.

Using RDS() to denote the spatial resolution compression function
and R(x) to represent the result of domain migration. Eq. (1) is updated
as Eq. (9):

I'(x) = RDS(I(x)) (C)]
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The output of the DSM is represented as Eq. (10):
R(x) = RDS (E"(x)) (10

R(x) as the feature map output of DSV, is sent as the input to the
action classification network which completes the human action feature
extraction and classification. The final recognition result will be output
by the classification head.

3.6. Joint training loss

For action classification we choose the cross entropy loss and the
formula for action classification loss L,z is shown below:

K
Lyg== ), (vlog5) an
i=1

K is the number of action classes, y; is the ground truth label, and
the ; is the prediction result of the action classifier. To achieve a
better balance of different parts of the loss function, we modify the loss
of action classification and the dark domain shift module loss during
the joint training procedure. We assign distinct weight coefficient g to
each part of the loss function based on their respective functions. The
complete loss function is defined as Eq. (12):

L=pLyr+ (=P Lpsy 12
4. Experiments
4.1. Experimental details and datasets

The proposed model is implemented using PyTorch and trained
on 4 NVIDIA 2080Ti GPUs. We fixed the learning rate as 2.5¢~*
and set the batch size to 4 throughout the training phase. We used
AdamW (Loshchilov & Hutter, 2017) to optimize the learning process
of our model. Unless otherwise specified, the network weights are pre-
trained based on the kinetics dataset (Kay et al., 2017). We resize the
training images to 224 x 224, and each training video frame undergoes
a center crop to 256 x 256. We conduct extensive experiments on
3 representative action recognition datasets under dark conditions:
ARID (Xu et al., 2021), UAV-human-night (Li et al., 2021), HMDB51-
Dark. Top-1 accuracy and top-5 accuracy are used to evaluate the
experimental results. We directly quote the recognition results on
the relevant datasets from the original papers, and for those that
lack experimental results, we reproduce the model and use * for
distinguishing.

ARID (Xu et al., 2021) dataset. The ARID dataset is specially used to
analyze human behavior in dark environments. It contains 11 common
action classes, the video frame rate is 30 fps, and the resolution is
320 x 240. The videos are all shot at night, and the shooting scenes are
divided into indoor and outdoor. The ARID dataset has two versions,
ARID1.0 and ARID1.5. ARID1.0 consists of 3784 video clips. The ratio
of the training set and the testing set is 7:3, and there are three splits.
ARID1.5 is composed of 5572 video clips, each action class contains
more than 320 clips, three indoor and outdoor shooting scenes are
added, and there are two ways to divide the training and testing sets.
Compared with large-scale action recognition datasets, the biggest dif-
ference of ARID is that all its videos are shot under low-light conditions,
which brings great challenges to the action recognition task.

UAV-human (Li et al., 2021) dataset. UAV-human is a large-scale
UAV (Unmanned Aerial Vehicle) human action analysis dataset, which
can be used in action recognition, pose estimation, pedestrian re-
identification, and other visual tasks. Its data is collected from three
different sensors carried by UAV: Azure DK, fisheye camera, and night
vision camera. Data from night vision is used for our experiments. The
UAV-human-night contains 155 classes of human activities, the video
frame rate is 25 fps, and the resolution is 640 x 480. There are 22,476
video clips in total, and two splits are provided.
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Fig. 5. Comparative examples all datasets. For HMDB51, the original HMDB51 (up)
and the synthesized HMDB51-Dark (down).

HMDB51 (Kuehne et al., 2011) dataset. HMDB51 is a small dataset
for action recognition, which contains 51 classes of human activities.
The videos are basically shot during the day or in an indoor room with
sufficient room. There are 6849 video clips in total, with a resolution
of 320 x 240, and the frame rate is 30 fps. It supplies three splits. Since
the videos in HMDB51 are not under dark conditions, we correct the
brightness of the videos according to the gamma correction principle
of the image. We follow the method of Guo et al. (2020), synthesizing
the HMDB51-Dark dataset, and the synthesized examples are shown
in Fig. 5. Specifically, we synthesize the dark videos according to
Eq. (13), where y obeys a Gaussian distribution with a mean of 0.2
and a variance of 0.07 to simulate different lighting conditions.

fn=r 13)

4.2. Comparison with state-of-the-arts

In this section, the main experimental results are presented. We
compared the classical action recognition backbones (Carreira & Zis-
serman, 2017; Feichtenhofer, Fan, Malik, & He, 2019; Hara, Kataoka,
& Satoh, 2017; Lin, Gan, & Han, 2019; Tran et al., 2018; Wang et al.,
2016), and some currently advanced action recognition backbones (Li,
Wang et al., 2022; Li, Wu et al., 2022; Liu et al., 2022) on four datasets.
In addition, we compared with the-state-of-the-art (SOTA) dark action
recognition methods (Chen et al., 2021; Liang et al., 2022; Singh et al.,
2022; Tu, Liu et al., 2023), of which the first three belong to the
two-step pipeline, and Tu, Liu et al. (2023) belongs to the one-step
pipeline.

Experiments on the ARID dataset. Table 2 shows our experimental
results on ARID1.5. The results of 3D-ResNet-18, I3D-RGB, 13D Two-
stream, R(2+1)D-GCN+BERT, and Darklight+R(2+1)D-34 are directly
copied from the corresponding paper (Singh et al., 2022). The results
of other models are replicated by us. We have compared 2D CNN-
based (Lin et al., 2019; Wang et al., 2016), 3D CNN-based (Carreira
& Zisserman, 2017; Feichtenhofer et al., 2019; Hara et al., 2017;
Tran et al.,, 2018), and Transformer based action recognition meth-
ods (Bertasius, Wang, & Torresani, 2021; Li, Wang et al., 2022; Li,
Wu et al., 2022), and also the methods specifical for low-light environ-
ments (Chen et al., 2021; Singh et al., 2022). Our Dark-DSAR enhances
the Top-1 accuracy by 2.56% (89.49% vs. 86.93%) when compared
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to the previous best-performing model (Singh et al., 2022). Compared
with Darklight+R(2+1)D-34, our Dark-DSAR uses 76.3% parameters
but gains 7.6% and 1.5% improvement on the Top-1 accuracy and Top-
5 accuracy, respectively (89.49% vs. 84.13%, 98.77% vs. 97.34%). We
have fine-tuned the reproduced models to enhance their performances.
Due to the number of action classes in the ARID dataset are small,
some CNN-based and Transformer-based models are not robust enough,
and the performance is unsatisfied. Our Dark-DSAR surpasses TimeS-
former by 44.84% (89.49% vs. 49.36%), and UniFormerV2 by 31.38%
(89.49% vs. 61.41%). Meanwhile, our Dark-DSAR has fewer parameters
(50.94M vs. 196M, 50.94M vs. 115M). Remarkably, on ARID1.5, our
method achieves the Top-1 accuracy of 89.49%, outperforming the
other models by at least 2%. Table 3 provides the results on the
ARID1.0 dataset. The proposed method achieves an average Top-1
accuracy of 96.99% and Top-5 accuracy of 99.77% on the three splits.
Compared to the existing SOTA action recognition method DTCM (Tu,
Liu et al., 2023), the Top-1 accuracy of Dark-DSAR is improved by
0.63% (96.39% vs. 96.99%), reaching the highest. In particular, as
shown in Table 4, compared to DTCM, we have reduced the plug-in
memory consumption by nearly one-third (828M vs. 2073M), while
maintaining a high recognition accuracy (96.99% vs. 96.36%).

Experiments on the UAV-human-night dataset. UAV-human-
night includes some videos taken by night vision cameras during the
daytime, resulting in the models’ performance being less stable than
those on ARID. The accuracy of the two splits varies significantly
because of the different subset divisions. As shown in Table 5, on this
dataset, the proposed Dark-DSAR still obtains the best performance on
two splits, whose accuracy outperforms the other models by at least 1%.
Taking the mean on these two splits, our Dark-DSAR achieves 57.16%
Top-1 accuracy and 82.69% Top-5 accuracy respectively, 0.82% and
1.16% higher than the second place method MViTv2 (Li, Wu et al.,
2022). The 2D model’s poor performance is evident in Table 5. On
split 1, our method shows a 21.63% improvement over TSM (the
highest-performing 2D CNN-based model). Additionally, our Dark-
DSAR increases the Top-1 accuracy by 0.95% compared to MViTv2-B
(the top performer among the Transformer-based models). On split 2,
our Dark-DSAR also spurpasses all of the other models.

Experiments on the HMDB51-Dark dataset. To further verify the
performance of the proposed method, we synthesized an HMDB51-
Dark version that simulates a dark environment by applying gamma
correction. On the synthetic dark dataset, we present the results in
Table 6. In terms of model performance, the hierarchy holds true:
Transformer-based models outperform 3D CNN-based models, which
in turn outperform 2D CNN-based models. When compared to the
highest performing 2D model — TSM, the proposed method shows a
20.11% enhancement in Top-1 accuracy without employing the pre-
training weights on the SICE dataset (Cai, Gu, & Zhang, 2018), and a
21.33% improvement with the pre-training weights integrated. Among
the 3D models, SlowFast achieves the highest accuracy, but our Dark-
DSAR presents a 19.44% improvement in comparison to it. For the
Transformer-based models, we choose the MViTv2-B as the baseline,
and our Dark-DSAR increases the Top-1 accuracy by 1.03% to it.
Notably, our method achieves the top-1 accuracy of 61.9%, which is
higher than other methods by more than 1%.

We compared the feature heat maps of Dark-DSAR on the ARID1.5
dataset for some types of action video after DSM processing and without
DSM processing, as shown in Fig. 6. From the figure, we can see that the
original input is in a relatively dark lighting condition, the color and
detail information of the unDSM-processed image is not rich enough,
and the scene and human features are not aggregated enough, and after
DSM processing, these problems are improved at some degree.

4.3. Ablation study

Effectiveness of our DSM. We explore the effectiveness of the
exploited DSM module for the task of action recognition on dark
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Neural Networks 179 (2024) 106622

Comparison with the state-of-the-arts on the ARID1.5 dataset. Models are pretrained on the Kinetics400 (Kay et al., 2017)
(K400) or the ImageNet (Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009) dataset.

Model Backbone Pretrained Top-1 (%) Top-5 (%) Params (M) GFlops
TSN (Wang et al., 2016) ResNet-50 K400 34.04 88.29 23.53 131.84
TSN (Wang et al., 2016)+DSM ResNet-50 K400 36.57 81.52 23.54 136.15
TSM (Lin et al., 2019) ResNet-50 K400 61.37 91.80 23.53 131.83
3D-ResNet-18* (Hara et al., 2017) - - 31.16 90.49 - -
I3D-RGB* (Carreira & Zisserman, 2017) - ImageNet 48.75 90.61 - -

I3D Two-stream* (Carreira & Zisserman, 2017) - - 51.24 90.95 - -
SlowFast (Feichtenhofer et al., 2019) ResNet3D-50 K400 66.76 91.58 62.02 97.29
SlowFast (Feichtenhofer et al., 2019)+DSM ResNet3D-50 67.64 92.84 62.03 101.60
R(2 + 1)D (Tran et al., 2018) ResNet3D-34 K400 63.52 92.29 63.54 162.85
R(2 + 1)D (Tran et al., 2018)+DSM ResNet3D-34 K400 66.57 94.25 63.55 167.17
Swin-T (Liu et al., 2022) - K400 67.69 97.55 27.51 69.95
Swin-T (Liu et al., 2022)+DSM - K400 69.48 97.94 27.54 71.34
TimeSformer (Bertasius et al., 2021) - K400 49.36 93.17 196* 122%
UniFormerV2 (Li, Wang et al., 2022) - K400 61.41 96.04 115* 1800*
MViTv2-S (Li, Wu et al., 2022) - K400 83.38 97.32 34.24 160
MViTv2-S (Li, Wu et al., 2022)+DSM - K400 85.65 97.41 34.25 160
MViTv2-B (Li, Wu et al., 2022) - K400 87.68 98.55 50.93 225
R(2 + 1)D-GCN+BERT* (Singh et al., 2022) - - 86.93 99.35 - -
Darklight (Chen et al.,, 2021)+R(2 + 1)D-34* - - 84.13 97.34 66.73 674.84
Dark-DSAR - K400 89.49 98.77 50.94 230

Table 3
Comparison with the state-of-the-arts on the ARID1.0 dataset.
Model Top-1 (%) Top-5 (%)
TSN (Wang et al., 2016) 52.54 94.17
I3D-RGB (Carreira & Zisserman, 2017) 72.78 99.39
I3D Two-stream (Carreira & Zisserman, 2017) 68.29 97.69
3D-ResNet101 (Hara et al., 2017) 71.57 99.03
R(2+1)D (Tran et al., 2018) 68.89 98.18
MViTv2-B (Li, Wu et al., 2022) 91.43 99.72
Swin-B (Liu et al., 2022) 89.79 99.53
TimeSformer-L (Bertasius et al., 2021) 81.39 98.26
UniFormerV2 (Li, Wang et al., 2022) 73.39 99.15
DANorm (Liang et al., 2022) 80.73 -
Suman et al. (2023) 95.86 99.87
UniFormerV2 (Li, Wang et al., 2022)-DSM 74.73 99.39
DarkLight-ResNeXt-101 (Chen et al., 2021) 87.27 99.47
DarkLight-R(2+1)D-34 (Chen et al., 2021) 94.04 99.87
DTCM (Tu, Liu et al., 2023) 96.36 99.02
Dark-DSAR 96.99 99.77
Table 4

Comparison of memory consumption and accuracy on the ARID1.0
dataset between DTCM and the proposed Dark-DSAR.

Model Memory(M) Top-1 (%)
DTCM (Tu, Liu et al., 2023) 2073 96.36
Dark-DSAR 828 96.99

videos. To verify the effectiveness of the DSM module, we select several
widely used action recognition models as the baselines, and compare
the accuracy of the model (without DSM, with DSM module the pre-
training weight is not loaded, and the DSM module the pre-training
weight is loaded) on three datasets. The input downsampling scale of
DSM is set to 2, the number of convolutional layers is set to 7, the
number of kernel channels is set to 32, and the other hyperparameters
of the model are kept consistent with the baseline.

We conduct experiments on kinds of backbones like 2D, 3D, and
Transformer, respectively. We choose TSN (Wang et al., 2016), the
pioneer of 2D models, as the 2D baseline, SlowFast (Feichtenhofer

et al., 2019) and R(2+1)D (Tran et al., 2018) as the 3D baseline, and
Video Swin (Liu et al., 2022) and MViTv2 (Li, Wu et al., 2022), as the
Transformer baseline. The training settings of the DSM are the same on
each baseline, and the only difference on the same baseline is whether
the DSM is used or not.

Effectiveness of DSM on the 2D backbone. In the 2D backbone, we
choose TSN as the baseline, TSN is one of the typical 2D CNN-based
methods for action recognition, it follows the structure of two streams,
using RGB image and optical flow as the input of two branches respec-
tively, applying sparse temporal sampling strategy to divide the long
series into multiple snippets, and taking one frame from each clip as
the final inputs. Results of TSN and TSN+DSM on the three datasets
are listed in Table 7. For Top-1 accuracy, TSN with DSM module has
9.02% higher than that without DSM on the ARID1.5 dataset. Similarly,
on the UAV-human-night and the synthetic HMDB51-Dark, DSM also
brings improvement to the accuracy, 1.05% and 1.85% respectively.

Effectiveness of DSM on the 3D backbone. For the 3D backbones, we
choose SlowFast and R(2+1)D as the baseline. SlowFast is a classical
3D CNN-based model for action classification. It employs dual chan-
nels with disparate frame rates as inputs, one operating at a faster
rate and the other at a slower rate. SlowFast addresses the challenge
of imbalanced temporal and spatial information within video action
recognition. R(2+1)D captures both temporal and spatial information in
videos by breaking down the 3D convolution operation into two distinct
steps: a 2D spatial convolution followed by a 1D temporal convolution.
The results of SlowFast and SlowFast+DSM on the three datasets are
presented in Table 8. For Top-1 accuracy SlowFast with DSM module is
0.88% higher than that without DSM on the ARID1.5 dataset. For UAV-
human-night, the DSM implementation leads to a 4.25% increment in
the Top-1 accuracy. For Top-1 accuracy on the synthetic HMDB51-
Dark, SlowFast with DSM outperforms the version without DSM by
2.76%.

The results of R(2+1)D and R(2+1)D+DSM on the three datasets
are presented in Table 9. On the ARID1.5 dataset, the Top-1 accuracy
of R(2+1)D with DSM module is 0.88% higher than that without
DSM. On UAV-human-night, the DSM implementation leads to a 4.25%
increment in the Top-1 accuracy. For Top-1 accuracy on the synthetic
dataset HMDB51-Dark, SlowFast with DSM outperforms the version
without DSM by 2.76%.
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Table 5
Comparison with the state-of-the-arts on the UAV-human-night dataset.
Model CSV1 CSV2 GFlops  Params (M)
Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)
TSN (Wang et al., 2016) 33.61 61.64 41.64 76.08 131.84 23.53
TSN (Wang et al., 2016)+DSM 35 60.77 42.36 77.26 136.15 23.54
TSM (Lin et al., 2019) 38.18 62.36 55.85 81.93 131.84 23.53
SlowFast (Feichtenhofer et al., 2019) 39.85 65.34 56.17 85.89 97.29 62.02
SlowFast (Feichtenhofer et al., 2019)+DSM  41.67 67.23 62.84 87.89 101.60 62.03
R(2 + 1)D (Tran et al.,, 2018) 39.19 62.88 54.08 82.37 162.85 63.54
R(2 + 1)D (Tran et al., 2018) +DSM 40.58 62.27 60.12 86.40 167.17 63.55
Swin-T (Liu et al., 2022) 39.88 65.93 62.79 87.35 69.95 27.51
Swin-T (Liu et al., 2022)+DSM 43.45 68.79 62.62 87.21 71.34 27.54
TimeSformer (Bertasius et al., 2021) 34.05 59.83 49.17 78.19 122* 196*
MViTv2-B (Li, Wu et al., 2022) 47.77 73.72 64.91 89.34 225 50.93
UniFormerV2 (Li, Wang et al., 2022) 42.35 69.57 58.68 88.06 1800% 115*
Dark-DSAR 48.72 75.08 65.59 90.29 230 50.94
Table 6
Comparison with the state-of-the-arts on the HMDB51-Dark dataset.
Model Top-1 (%) Top-5 (%) GFlops Params (M)
TSN (Wang et al., 2016) 42.61 71.66 131.84 23.53
TSN (Wang et al., 2016)+DSM 44.46 72.81 136.15 23.54
TSM (Lin et al., 2019) 52.81 80.02 131.84 23.53
SlowFast (Feichtenhofer et al., 2019) 54.08 83.13 97.29 62.02
SlowFast (Feichtenhofer et al., 2019)+DSM 56.84 83.33 101.60 62.03
R(2 + 1)D (Tran et al., 2018) 49.28 76.23 162.85 63.54
R(2 + 1)D (Tran et al., 2018) +DSM 51.81 78.48 167.17 63.55
Swin-T (Liu et al., 2022) 60.85 85.17 69.95 27.51
Swin-T (Liu et al., 2022)+DSM 61.55 85.42 71.34 27.54
TimeSformer (Bertasius et al., 2021) 51.22 78.67 122% 196*
MViTv2-B (Li, Wu et al., 2022) 65.66 87.36 225 50.93
UniFormerV2 (Li, Wang et al., 2022) 54.62 81.07 1800* 115*
Dark-DSAR 67.13 88.28 230 50.94
Table 7 Table 9

Ablation study of TSN (Wang et al., 2016) with (w/) DSM or without (w/0) DSM on
the three low-light human action datasets.

Ablation study of R(2+1)D (Tran et al., 2018) with (w/) DSM or without (w/0) DSM
on the three low-light human action datasets.

Datasets Top-1 (%) Top-5 (%) Datasets Top-1 (%) Top-5 (%)

w/ w/o w/ w/o w/ w/o w/ w/o
ARID1.5 43.06 (+9.02) 34.04 88.16 (-0.13) 88.29 ARID1.5 66.57 (+3.05) 63.52 94.25 (+1.96) 92.29
UAV-human-night 38.68 (+1.05) 37.63 69.02 (+0.16) 68.86 UAV-human-night 50.35 (+3.71) 46.64 74.34 (+1.71) 72.63
HMDB51-Dark 44.46 (+1.85) 42.61 72.81 (+1.15) 71.66 HMDB51-Dark 51.81 (+2.53) 49.28 78.48 (+2.25) 76.23

Table 8
Ablation study of SlowFast (Feichtenhofer et al., 2019) with (w/) DSM or without (w/0)
DSM on the three low-light human action datasets.

Table 10
Ablation study of Video Swin (Liu et al., 2022) with (w/) DSM or without (w/0) DSM
on the three low-light human action datasets.

Datasets Top-1 (%) Top-5 (%) Datasets Top-1 (%) Top-5 (%)

w/ w/o w/ w/o w/ w/o w/ w/o
ARID1.5 67.64 (+0.88) 66.76 92.84 (+1.26) 91.58 ARID1.5 69.48 (+1.79) 67.69 97.04 (-0.51) 97.55
UAV-human-night 52.26 (+4.25) 48.01 77.56 (+1.94) 75.62 UAV-human-night 53.04 (+11.70) 41.34 78.00 (+1.36) 76.64
HMDB51-Dark 56.84 (+2.76) 54.08 83.33 (4+0.20) 83.13 HMDB51-Dark 61.55 (4+0.70) 60.85 85.17 (-0.25) 85.42

The effectiveness of DSM on the Transformer-based backbone. For
Transformer-based models, we choose Video Swin Tiny and MViTv2-
B as the baseline. Results of Swin-T and MViTv2-B w/DSM or w/o
DSM on three datasets are listed in Table 10 and Table 11. Compared
to the baselines, when equipped with DSM, Video Swin improves the
accuracy by 1.79% (69.48% vs. 67.69%), 1.7% (53.04% vs. 51.34%),
0.7% (61.55% vs. 60.85%), respectively. As shown in Table 11, DSM
brings in a minimum of 0.47% improvement in accuracy for MViTv2.

Effect of the scale factor. The amount of information carried by
the video data is closely related to the resolution of the video. Gen-
erally, the higher the video resolution, the more detailed information
it carries. However, the higher the resolution of the original input, the
higher the computational consumption is. Consequently, it is extremely
important to choose an input size suitable for the model depending on
the downstream task, which is very meaningful to reduce unnecessary
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Fig. 6. The figure displays the results of visualizing the feature maps at the front of the
action classifier for Dark-DSAR with and without DSM, using four action classes from
the ARID1.5 dataset as examples. The left shows the RGB frame of the original input.
The middle presents the feature map before inputting the action classifier without DSM,
and the right shows the visualization results with DSM.

Table 11
Ablation study of MViTv2-B (Li, Wu et al., 2022) with (w/) DSM or without (w/0)
DSM on the three low-light human action datasets.

Datasets Top-1 (%) Top-5 (%)

w/ w/o w/ w/o
ARID1.5 88.15 (+0.47) 87.68 98.47 (-0.08) 98.55
UAV-human-night 57.16 (+0.82) 56.34 82.69 (+1.16) 81.53
HMDB51-Dark 67.13 (+1.47) 65.66 88.28 (+0.92) 87.36

memory expenses. Wang et al. (2021) pointed out the existence of sig-
nificant spatially redundant information in high-resolution videos. Ma
et al. (2022) showed that videos do not have obvious information loss
during downsampling in a certain range (especially for some tasks
like video action recognition), and the reason for the degradation of
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Table 12
Changing the scale factor of the DSM module, the accuracy varied
accompany with the input videos’ resolution.

Scale factor Memory (M) Top-1 (%) Top-5 (%)
1 (baseline) 1469 67.69 97.55
2 828 68.46 97.87
4 428 65.30 97.87
8 334 64.58 95.95

model performance after downsampling is the mismatch between the
network structure and the input size. Based on the above knowledge,
we changed the input size of the DSM module to explore the optimal
input size to match the network. To harmonize with the data processing
mechanism of the GPU, we set the scale factor to an exponential level
of 2 and studied the change in accuracy when the scale factor varies.
During the experiment, the number of the convolutional layers and the
feature map channels were set to 7 and 32 respectively.

The results are shown in Table 12. When not scaling or scaling by
a small amount, the accuracy is maintained and even gets higher if the
scale factor is 2 (68.46% vs. 67.69%). As mentioned above, scaling
at this level removes the spatial redundant information in the data
and retains the effective information for action recognition, leading to
the model performs well. When the scale factor is further increased,
the recognition accuracy decreases significantly (65.40% vs. 68.46%,
64.58% vs. 68.46%), because the downsampling at this time no longer
only removes the spatial redundancy information, but also removes
some important information carried by the pixels.

Effect of the number of convolutional layers. We hope that the
proposed plug will introduce as little computational consumption and
fewer additional parameters as possible without affecting the network
performance. Based on this, in this section, we explore the effect of
convolutional network depth on the DSM structure. The DSM structure
uses symmetric connections of U-Net networks, so in our experiments,
we change the number of network layers in pairs and delete the feature
extraction layers and upsampling layers which have the same scale.
The final count of layers is set to 7, 5, and 3, respectively. The scale
factor is fixed to 1 and the number of feature map channels is fixed to
32 during the experiments, and the experimental results are shown in
Table 13. When other parameters of DSM are fixed to be set, the vari-
able of single convolutional layers has less influence on the accuracy
of action recognition. It can be known from the table that there is no
significant decreasing trend of recognition accuracy when the number
of network layers is reduced (67.70% vs. 67.69%, 66.84% vs. 67.69%),
but this does not mean that network layers have no influence on model
performance, which is presented in Fig. 7. When the scale factor is
fixed to 1, the number of feature map channels is fixed to 24, and
the number of convolutional layers is fixed to 7 (3 pairs), the model
maintains a satisfactory performance. A small number of channels with
a modest scale factor or a low number of channels combined with
numerous convolutional layers can also obtain effective recognition
results within the appropriate range. From Fig. 7, we can see that
the scale factor is a critical determinant of the model performance.
This observation aligns with the previously stated conclusion that the
input size (resolution) plays an important role in influencing action
recognition. The accuracy remains relatively stable with small scaling
changes but significantly drops as scaling increases. The convolutional
layers, scale factor, and number of channels influence each other, which
in turn affects recognition accuracy.

Effect of the convolution layer. In addition to the number of
convolutional layers, we explored the internal convolutional compo-
sition of our DSM. In this experiment, we fixed the other parameters
and structural settings of the DSM and substituted PW Conv and DW
Conv. Experimental results are shown in Table 14. The worst results
are obtained when only PW Conv is used (64.56% vs. 69.48%), which
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Fig. 7. Top-1 accuracy on the ARID1.5 dataset. Where Video Swin (Liu et al., 2022) is the backbone, DSM with various combinations of scale factor, channel numbers, and

convolutional layers. The horizontal coordinates consist of three values separated by
respectively. 4 indicates of relatively high Top-1 accuracy, and

Table 13

Changing the convolutional layers, pairs of Layer
1, 2, and 3 represent the DSM with 3, 5, and 7
convolutional layers, respectively.

Layers (pair) Top-1 (%) Top-5 (%)
3 (baseline) 67.69 97.55
2 66.84 97.20
1 67.70 97.67

Table 14

Change the convolution layer of the DSM module.
Conv settings Top-1 (%) Top-5 (%)
DW+PW (baseline) 69.48 97.94
DW+DW 66.08 97.01
PW+DW 66.09 98.05
PW+PW 64.56 95.92

is due to the fact that PW Conv uses window-aware features of 1 x 1
size, which extracts less spatial neighborhood information compared to
3 x 3 kernel. Top-1 accuracy is also unsatisfying when using only DW
Conv or using PW Conv first and then the DW Conv. This is because
the feature representation ability of the model is limited when using
only DW Conv. DW Conv uses the same convolution kernel on each
channel and can only perform convolution operations on each input
channel, but cannot interact information across channels, which limits
the model’s ability to perceive local features. In addition, when DW
Conv is performed after PW Conv, the model has lost some detailed
information of the original features in the pre-modeling stage, which
also affects the performance of the model. Performing DW Conv first
and then using PW Conv can reduce the amount of computation.
Besides, it can effectively integrate the depth and channel-associated
features, so it has the best recognition performance.

Effect of the number of feature map channels of DSM. The
number of channels is related to the order of magnitude of the quadratic
operations in the enhancement curve, and here we tried to reduce
the computational expense of the proposed plug by decreasing the
number of channels. We selected four different channel numbers of
8, 16, 24, and 32, with a fixed scale factor of 1 and a fixed number
of convolutional layers of 32. The accuracy of action recognition on
the ARID1.5 dataset for the four cases is shown in Table 15. From
the results, we can find that decreasing the number of channels de-
grades the recognition accuracy. The feature map channels in the DSM
structure represent different features of the estimated curve that can
be extracted, and decreasing the number of channels reduces the curve
parameter features that can be learned, and the network cannot fully
extract the curve features. As a result, losing the abstract features and

@
5

11

representing the scale factor, the number of channels, and the convolutional layers,

indicates the low Top-1 accuracy.

Table 15
Changing the convolution channels of the DSM
module, and the scale factor is fixed as 1.

Channels Top-1 (%) Top-5 (%)
32 (baseline) 67.69 97.55
24 68.54 97.53
16 68.13 97.32
8 66.75 96.71

the detailed information required for illumination condition recovery,
which further affects the action recognition accuracy under dark con-
ditions. Of course, this does not mean that more channels are better.
Increasing the number of channels will result in a higher count of
network parameters and computational effort, consequently, promoting
the risk of overfitting.

Trade-offs between accuracy and inference efficiency. For DSM,
a large scale factor, fewer channels, and fewer convolutional layers im-
ply higher computational and inference efficiency, but at the same time
recognition accuracy suffers a bit due to unrefined feature extraction.
In this part, we give a more detailed description of Fig. 7, where all
experiments are performed on 4 NVIDIA 2080Ti GPUs, the learning rate
is set to 2.5¢7*, and the number of training epoch is set to 15. It can
be seen from 7 that the parameter that has the greatest impact on the
accuracy rate is the scale factor. The scale factor gradually increases
from left to the right, and the overall trend of the accuracy shows a
decreasing state. Table 12 and Fig. 7, reveal that as the scale factor
increases, the memory cost gradually decreases. With a scale factor of
8, memory consumption and reasoning time are minimal, but accuracy
is correspondingly low. However, reducing the scale factor from 8 to
2 results in a notable increase in accuracy, while the relative rise in
memory consumption remains within an acceptable range. When the
scale factor is reduced from 2 to 1, the memory consumption increases
by more than double, but the accuracy has no significant growth. When
the scale factor is reduced from 2 to 1, the memory consumption
increases more than twofold and there is no significant increase in
accuracy. Based on the observation, we set our scale factor of the
DSM module to 2. To compensate for the detail loss caused by the
scale factor, we tend to set the number of channels and the number
of convolutional layers to larger values, such as 32 and 3.

5. Conclusions

To handle the task of dark video human action recognition, this
work proposed a novel model Dark-DSAR, a cross-domain end-to-end
framework focusing on action recognition in dark scenes, achieves
framework coherence and model lightweight. Our main contributions
are three-fold: (1) Designing a domain shift module (DSM) to migrate



Y. Yin et al.

videos from dark domain to light-optimized domain, which can be as-
sembled into arbitrary action recognition backbones without introduc-
ing large computation. (2) Integrating illumination domain adaption
and action classification into a single stream model, which significantly
simplifies the complex training stages of the existing two-step pipelines.
(3) Exploring the matching relationship between video resolution and
the model itself, decreasing the model parameters by compressing the
spatial resolution of the videos. Extensive experiments demonstrate that
our Dark-DSAR is lightweight and shows superior accuracy on all the
three dark video action recognition datasets.
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