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Abstract—Recognizing human actions in dark videos is a useful
yet challenging visual task in reality. Existing augmentation-based
methods separate action recognition and dark enhancement in
a two-stage pipeline, which leads to inconsistently learning of
temporal representation for action recognition. To address this
issue, we propose a novel end-to-end framework termed Dark
Temporal Consistency Model (DTCM), which is able to jointly
optimize dark enhancement and action recognition, and force
the temporal consistency to guide downstream dark feature
learning. Specifically, DTCM cascades the action classification
head with the dark augmentation network to perform dark video
action recognition in a one-stage pipeline. Qur explored spatio-
temporal consistency loss, which utilizes the RGB-Difference
of dark video frames to encourage temporal coherence of the
enhanced video frames, is effective for boosting spatio-temporal
representation learning. Extensive experiments demonstrated
that our DTCM has remarkable performance: 1) Competitive
accuracy, which outperforms the state-of-the-arts on the ARID
dataset by 2.32% and the UAVHuman-Fisheye dataset by 4.19%
in accuracy, respectively; 2) High efficiency, which surpasses the
current most advanced method [1] with only 6.4% GFLOPs and
71.3% number of parameters; 3) Strong generalization, which
can be used in various action recognition methods (e.g., TSM,
I3D, 3D-ResNext-101, Video-Swin) to promote their performance
significantly.

Index Terms—Dark Video Action Recognition, Unified Frame-
work, Dark Temporal Consistency, Representation Learning

I. INTRODUCTION

IDEO data has explosively grown in recent years, some

of them are captured under undesired lighting conditions
due to environmental and/or technical constraints. Although
deep neural networks have achieved great success in the video
action recognition task [2], [3], [4], [5], [6], recognizing
human actions in low-light conditions is still a challenging
problem. Compared with videos that are recorded under nor-
mal illumination, videos shot under low illumination have
special characteristics [7]: low brightness and low contrast.
These limitations result in subpar video quality, which sig-
nificantly undermining the performance of action recognition
methods [8], [9], [10]. These methods were primarily designed
for standard-quality videos, thus the limitations obstruct their
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Fig. 1. An illustration of using RGB-Difference to capture temporal continuity
of the video sequence, where the difference before and after dark enhancement
is presented. It can be found that the dark enhancement often breaks the
temporal continuity of the video and can be relieved by learning the temporal
consistency. Here is an example of the action “Turn” from the ARID
dataset [7].

applicability in low-light video environments [ 1], [12], [13]
in applications involving dark videos. Consequently, exploring
effective action recognition method that works well in dark
videos is an urgent task.

Despite some efforts have been done [I], [7], [14], [15],
[16], the problems for dark video action recognition are
far from being solved. For example, the way to learn dark
features directly from dark videos relies on large, well-labeled
datasets, but such a desired dataset is not available at present.
Another way is the domain adaptive feature learning, e.g., [17],
[18], [19],but they are computational expensive, as involving
training the large-scale video datasets (e.g., Kinetics400 [4],
Something-Something [20]). Benefiting from the intuitiveness
and efficiency, augmentation-based methods [1], [7], [21] are
widely used. They perform dark video action recognition
in two-stage: 1) conducting frame dark enhancement for
dark videos, 2) using the enhanced results to execute action
recognition. However, isolating action recognition and dark
enhancement in a two-stage pipeline may result in suboptimal
recognition performance. Studies [7], [22] have found that
some enhancement methods can be regarded as artifacts or
even adversarial attacks for video action recognition, since
they focus more on enhancing the visibility rather than aug-
menting the visual features for recognition. On the other hand,
the two-stage pipeline methods, which directly apply image
enhancement to dark videos, often break the temporal consis-
tency among the input dark video frames and their enhanced
version. Because the enhancement methods [23], [24], [25]
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are designed for images, ignoring the spatio-temporal correla-
tion among the image sequence. The temporal inconsistency
decreases the action recognition performance, since it affects
the spatio-temporal representation learning. Consequently, it
is crucial to learn the temporal consistency for downstream
spatio-temporal representation learning in an end-to-end way
to boost the performance of dark video action recognition.

One representative method is [26], which infers the motion
prior for single image and enforces the temporal consistency
for low-light video enhancement. However, it can only be
trained on the synthetic images and its performance is not
satisfactory with respect to real videos. How to make full
use of the neighboring frames to improve the enhancement
capacity and accelerate the processing speed is remains an
unsolved issue [27].

To address this issue, we propose an end-to-end uni-
fied framework named Dark Temporal Consistency Model
(DTCM), which can exploit the temporal consistency infor-
mation between neighboring video frames, learn temporal
representation interactively with dark video action recognition,
and expedite the enhancement speed in a one-stage pipeline.
As shown in Fig. 2, the explored DTCM cascades the enhance-
ment network and the action recognition network to form a
single stream model, in which the dark video frames are well
enhanced to be used for action classification. Specifically, an
improved Zero-DCE [28] is adopted for dark enhancement
and the 3D-ResNext-101 [29] is chosen as the action classifier
based on extensive experimental examination. The transfomer-
based action recognition models i.e. TimeSformer [30] and
VideoSwin [31] are not used here due to their expensive
computation cost. Remarkably, the proposed DTCM is flex-
ible, where any darkness enhancement networks and action
recognition networks can be easily integrated with it.

Moreover, to extract the temporal information for temporal
consistency learning, we explore a temporal consistency loss
to maintain the temporal smoothness of the consecutive video
frames. Besides, we design a modified spatial consistency
loss with the usage of more local spatial information to
strengthen the spatial stability inspired by Zero-DCE [28].
The temporal consistency is learned directly from the real-
world dark videos, and the optimized spatio-temporal features
are captured for action recognition. As shown in Fig. 1, after
temporal consistency learning, the original temporal continuity
between successive video frames is preserved and robust video
feature learning is benefited.

In addition, to accelerate the dark video enhancement speed,
we share the computation between adjacent video frames
during enhancement based on the illumination invariant as-
sumption. We also lighten the dark enhancement network
of [28] to further improve the efficiency, where both the
number of parameters and the computation cost are reduced
by about 70%.

On the other side, to promote the research of action recogni-
tion in dark videos, we construct a dataset named Dark-48 with
8815 extremely dark videos in 48 categories, which is publicly
released at the website https://github.com/yzfly/Dark48. Com-
pared to the most widely used dark video dataset ARID [7],
our Dark-48 is about 2.3x (8815 videos vs. 3784 videos)

larger, and also contains richer semantic features of dark
actions (48 classes vs 11 classes). Videos in our Dark-48 are
collected from various existing action recognition datasets by
evaluating the video darkness, where the evaluation measure
is described in the last paragraph of section III (see Eq. 14).

To verify that whether dark video action recognition can
be benefited from the end-to-end training, we test different
training settings. Experimental results show that the presented
DTCM method not only enhances the quality of dark video
enhancement but also significantly boosts the accuracy of dark
video action recognition. For example, its action recognition
accuracy achieves to Top-1 97.83% and Top-1 33.36% on the
ARID dataset [7] and the UAVHuman-Fisheye dataset [32],
respectively. In summary, our main contributions lie in three
aspects:

e« We propose an end-to-end learning model DTCM to
recognize human actions in dark videos, where the dark
video is jointly enhanced for optimizing the performance
of action recognition in a one-stage pipeline.

« We exploit a spatio-temporal consistency loss to preserve
the temporal smoothness of the enhanced dark video
frames, which learns robust spatio-temporal representa-
tion from the dark action videos.

e A large-scale dataset termed Dark-48 with extremely
dark videos is collected for dark video action recognition
investigation, which contains larger action categories and
richer semantics than the existing datasets, e.g. ARID [7].

« Extensive experiments demonstrated that the explored
DTCM method achieves the state-of-the-art performance
on both accuracy and efficiency for recognizing human
actions in dark videos.

II. RELATED WORK
A. Dark Image Enhancement

For dark image enhancement, the traditional methods, e.g.
GIC [33] is often used to adjust the image luminance,
whereas HE [34] produces higher contrast images. The multi-
scale retinex (MSR) method [35] provides color constancy
and dynamic range compression by using a retinex, which
combines several SSR outputs, to produce a single output
image. LIME [36] achieves the enhancement by estimating
and refining a low-light image illumination map. For the recent
deep learning methods, e.g. KinD [37], which is inspired
by the retinex theory, decomposes image enhancement into
light adjustment and degradation removal. Zero-DCE [2§]
formulates light enhancement as a task of image-specific curve
estimation with a deep network. StableLLVE [26] enforces the
temporal stability of low light video enhancement with only
static images, and learns and infers motion field (i.e. optical
flow, which is time-consuming to estimate) from a single
image, then synthesizes the short-range video sequences. LL-
Net [38] uses a deep autoencoder-based approach to identify
signal features from low-light images and adaptively brightens
images without over-amplifying/saturating the lighter parts in
images with a high dynamic range. HLA-Face [39] boosts the
dark images and degrades the normal-light images, making
both domains move toward each other for face detection in
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Fig. 2. Overview the structure of the proposed Dark Temporal Consistency Model (DTCM), which consists primary components of dark video enhancement
and action recognition. Action recognition is cascaded with dark video enhancement to form a single-stream model and being jointly optimized in a one-
stage pipeline. Spatio-temporal (S-T) consistency of the enhanced video frames, which is beneficial to video action recognition in dark, can be preserved by
comparing the RGB-difference before and after dark video enhancement. Dark enhancement is efficiently performed by temporal-related enhancement, which
reusing the parameters R (estimated by only the keyframe as Eq. 11) to enhance all video frames for reducing parameter estimation’s time-consumption.

dark. However, these methods process a low-light video frame-
by-frame, which ignoring the temporal information to improve
the enhancement performance. In contrast, our DTCM takes
the correlation of neighboring video frames into account to
preserve video temporal smoothness and reduce the time of
parameter estimation effectively.

B. Action Recognition in Dark Videos

Although various action recognition methods [40], [41],
[42], [10] and datasets [43], [44], [45] have been investigated
and proposed, action recognition in dark videos is yet a
challenging task. Due to the low quality of dark video, the
existing optical flow estimation methods [46], [47], [48], [49],
[50] are unable to obtain accurate motion information, causing
the two-stream approaches [51], [52], [53], [54] perform poor.
Skeleton-based action recognition methods [55], [56] are also
commanly used, since the skeleton representation is much
more efficient and robust than other modalities such as RGB
frames [57]. Zhou et al. [58] propose a feature refinement
module equipped with contrastive learning to solve the am-
biguous actions for skeleton-based action recognition. TD-
GCN [59] applies different adjacency matrices for skeletons
from different frames to improve the flexibility of GCN.
Mask-GCN [60] focuses on learning action-specific skeleton
joints to handle motion patterns in a practical skeleton-based
action recognition task. Although these skeleton-based action
recognition methods improve the recognition robustness, they
highly rely on the quality of the human pose estimation
results, but the performance is unsatisfactory in extremely low-
light images [61]. Ulhaq [14] presents an action recognition
strategy with multiple video streams by using deep multi-
view representation learning. Recently, Xu et al. [7] collect the
first dataset named ARID focused on human actions in dark
videos, and find that the current action recognition models
and image enhancement methods are not effective for the
task of dark video action recognition. DarkLight [1] utilizes
both dark videos and their brightened counterpart to form

a dual-pathway structure for learning video representation.
Although performance is significantly improved, expensive
computation is required. All of these methods conduct dark
video action recognition in a two-stage pipeline, which breaks
the connection between enhancement and recognition, and
leads to the non-robust and unsatisfactory recognition perfor-
mance. Our DTCM creates a correlation for enhancement and
recognition by jointly optimizing dark enhancement and action
classification interactively in dark videos.

C. Domain Adaptation

Image-to-image translation has been extensively studied
before for domain adaptation, but few works have explicitly
investigated visual domain adaptation for dark video action
recognition. CyCADA [62] enforces cycle-consistency, while
leverages a task loss and adapts representation learning at both
the pixel-level and feature-level for image domain adaptation.
[63] learns an invertable generator, which can transform the
appearance condition of images, to improve visual place
recognition and metric localization under appearance change.
Despite these methods can be extended to videos by processing
a video frame-by-frame, the temporal information will be
missed and huge computation cost is needed since there are
a large amount of video frames. DANorm [64] enables the
model to learn features between source domain and target
domain by constraining the vectors in feature subspace, but its
performance is far from satisfactory. In the dark video action
recognition task, these methods are either computational heavy
and cannot be applied, or the performance is unsatisfactory.
The proposed DTCM solves the above defects and achieves
good performance on both computational efficiency and accu-
racy for dark video action recognition.

III. PROPOSED METHOD

In this section, we will describe the proposed DTCM, which
combines dark video enhancement with dark video action
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recognition jointly in a one-stage framework, to learn the
optimal spatio-temporal representation for action recognition
in dark videos end-to-end.

A. Motivation

There are three main difficulties that prevent the optimiza-
tion of dark video enhancement for promoting human action
recognition, instead of for boosting the dark video visual
quality.

Spatio-temporal consistency preservation. The previous
dark enhancement methods cause serious spatio-temporal in-
stability, which harms the learning of meaningful spatio-
temporal features from successive video frames for dark video
based action recognition.

Suitable training strategy. The two-stage training strategy
breaks the connection between enhancement and recognition.
Besides, inappropriate end-to-end training settings fall into
learn useless features easily, even causing gradient explosion.

Expensive hardware and consumption cost. The prior
dark image enhancement methods [28], [36] usually require
huge memory consumption and high computation cost, due to
a mass of video frames and large image spatial size require to
be processed.

As shown in Fig. 2, we design a one-stage framework —
DTCM, which cascades recognition-oriented dark enhance-
ment with an action classifier to solve the above problems
uniformly. Specifically, our DTCM contains three main com-
ponents: (1) Spatio-temporal consistency preservation, where
a spatio-temporal consistency loss is exploited to encourage
the temporal coherence of the enhanced dark video frames.
(2) Interactive optimization for dark video enhancement and
action classification, where an effective end-to-end training
strategy in the one-stage manner is explored to optimize them
jointly. (3) Dark enhancement model lightening and redundant
computation reduction, where the illumination invariant as-
sumption is applied to exploit the temporal correlation between
video frames for improving the enhancement efficiency.

B. Spatio-temporal Consistency

Spatial consistency loss Lgc, which encourages spatial
coherence of the enhanced dark video frames by preserving the
luminance difference of spatial neighboring regions between
the input video clip and its enhanced version:

K
1
Lscr(DY,DI) = 22> > (I¥i = Y| = |P = Pj|)%,

i=1jeQ(i)

)
1 T
Lsc = 7 ) Lscr(DY:, DI), )

t=1
where DI denotes the input dark video frame and DY
represents the enhanced version. We indicate Y and P as the
average intensity value of the local spatial region in DY and
DI, respectively. T' represents the number of input video clip
duration, K is the number of local regions, and (i) denotes
the eight neighboring regions (top, down, left, right, top-left,
top-right, down-left, down-right) that are centered at the region

1. The size of the local region is set to 4 x 4 as Zero-DCE [28].
Compared with Zero-DCE [28], we use more neighboring
regions here (8 vs 4) to improve the spatial consistency before
and after enhancement.

Temporal consistency loss L¢ encourages temporal co-
herence of the enhanced dark video frames via keeping the
RGB-difference of adjacent frames between the input video
clip and its enhanced version:

T-1

1
Lrc = 7 ; Lscr(|DYiy1 — DYil, [ DIy — DI),
3)

where 7' is the number of input video clip duration. We denote
DY and DI as the enhanced frame and the input frame,
respectively. It should be noticed that |DY;41 — DY;] is the
RGB-Difference of the enhanced frame, and |DI;; — DIy
is the RGB-Difference of the dark frame. Importantly, the
temporal consistency loss L7c ensures the trained model to
generate enhanced video clips, which can mimic the temporal
variation of the original dark video clips precisely.

Spatio-temporal consistency loss L s, which is a com-
bination of the spatial consistency loss Lgc and the temporal
consistency loss Lpc, used for training the dark video en-
hancement model, is defined as:

Lsrc = Lsc + Lrc 4

It should be noted that the value of Lgrc represents the
spatio-temporal inconsistency of the enhanced video, and we
learning to minimize the inconsistency to achieve spatio-
temporal consistency preserving.

C. One-stage joint training

Dark enhancement loss Lp,.;. The exposure, color con-
stancy, and illumination smoothness should be considered for
dark image enhancement together since the original semantics
should also be preserved when enhancing the brightness.
We use the loss functions that are well designed by Zero-
DCE [28], which are expressed as:

LDaTk = Le:cp + Wcochol + Wt'UALth7 (5)

where L,, is the Exposure Control Loss, L., denotes the
Color Constancy Loss, and Ly, , represents the Illumination
Smoothness Loss. W, and Wy, , are the loss weights. In
this work, we use the same settings as Zero-DCE [28] i.e.
Weor = 0.5, Wy, , = 20.

Action recognition loss L r, which used here is the
standard cross entropy loss:

Lagr = CrossEntropy(y, 3), (6)

where y is the action category, ¢ is the predicted category.
Joint training loss L;.:,;. To improve the performance
of dark video action recognition with the help of dark video
enhancement, we train the model jointly by back-propagating a
linear combination of the spatio-temporal consistency loss, the
dark enhancement loss, and the cross entropy loss of action
recognition through the entire network. In other words, we
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train our DTCM with the usage of the following integrated
loss function:

Liotat = Lar + a«(WsrcLsre + Lpark), @)

where Wgspc is a weight utilized to balance the scale of
Lsrc. The design of Wgreo makes our DTCM enjoys great
flexibility for spatio-temporal consistency learning, the detail
will be shown in the last part of section IV-D. « is a scalar
weight modulates the influence of dark enhancement. Both
Wsre and « are determined experimentally.

D. Efficiency Promotion

Both the memory consumption and the computation cost
become huge when enhancing a large number of dark video
frames. Inspired by Zero-DCE [28], we present an efficient
video enhancement method via applying the illumination
invariant assumption and designing a lightweight network,
which further utilizes the video temporal information for
downstream dark video action recognition efficiently.

Illumination invariant assumption. A direct application
of the existing low-light image enhancement methods to
dark videos often leads to unsatisfactory results and requires
high computation cost due to the neglect of the temporal
information between neighboring video frames [27]. We try to
exploit the correlation of neighboring video frames by propos-
ing the illumination invariant assumption: the illumination of
continuous k frames in AT time is constant. By applying the
illumination invariant assumption, we can reduce redundant
computation and speed up the enhancement speed effectively.

For a single low-light image I, we use a lightweight
model [28] to learn a series of pre-defined enhancement
parameters R.

RZF(I),R:{Tl,TQ,...,Tg}, (8)

where r is utilized for iterative estimating the enhanced image,
and we conduct 8 iterations here. The enhanced image E'I can
be estimated with R as follows:

EI = Fr(I) 9)

To promote the enhancement efficiency, based on the illu-
mination invariant assumption, the estimated R is shared for
the consecutive k video frames for enhancement as Eq. (10):

EI; = Fr(l),i=1,2,...,k (10)

Moreover, in our practice, to best maintain the illumination
invariant assumption, the keyframe (i.e. the middle frame of
the k£ frames’ sequence) is selected for the estimation of R as
Eq. (11):

R = F(I2), (11)

In this way, compared to the common method, the computa-
tion and the memory occupation reduced to 1/k theoretically,
and the temporal consistency is well guaranteed.

Lightweight enhanced network. We adopt the Zero-
DCE [28] as the baseline for dark frame enhancement due
to its simplicity and powerful performance. However, we find
that Zero-DCE [28] causes huge memory consumption in the

end-to-end dark action recognition training, because it only
uses the simplest plain 3 x 3 CNN layer. To overcome this
drawback, we lightweight the Zero-DCE [28] network, where
the detailed network architecture is shown in Fig. 3. For the
first convolutional layer, is a plain 3 x 3 CNN layer, which
consists of 32 convolutional kernels with size 3 x 3 and stride
1 followed by the ReLU activation function. For Layers 2-
4, we utilize the ShuffleNetV2 [65] basic module design. For
Layers 5-6, we apply the ShuffleNetV2 [65] Spatial Down
Sampling module design. The last convolutional layer is a
plain 3x3 CNN layer followed by the Tanh activation function.
Compared to the original Zero-DCE [28] network, our method
uses only 28.92% (22.97K vs. 79.42K) trainable parameters
and 28.87% (1.51G vs. 5.21G) Flops while can process an
input image with size 256 x 256 x 3.

E. Action Classifier.

In our DTCM, the action classifier is jointly trained with the
dark video enhancement network in an end-to-end manner.
Notably, our DTCM is flexible to be used for any action
recognition network (e.g. TSM [66], 3D-ResNet [29], Video-
Swin [31]). Following [29], we select 3D-ResNeXt-101 as the
action classifier, due to its promising performance on various
datasets [67]. The structure of 3D-ResNeXt-101 is analyzed
in Table I for the reference.

TABLE I
THE ILLUSTRATION OF OUR USED ACTION CLASSIFIER
3D-RESNEXTI101 [29]. NOTE THAT BOTH THE KERNEL SIZE AND THE
OUTPUT SIZE ARET x W x H

Stage Layer Output size
raw — 64 x 112 x 112
convy T X7 XT7,064, stride 1,2,2 64 X 56 X 56
maxpooly 3 X 3 x 3, stride 2,2,2 32 X 28 x 28
1x1x1,128
reso 3 x3x 3,128 X 3 32 x 28 x 28
1x1x1,256
1x1x1,256
ress 3x3x3,256 | x4 16 x 14 x 14
1x1x1,512
1x1x1,512
res4 3 x3x 3,512 X 23 8XTxT
1x1x1,1024
1x1x1,1024
ress 3 x 3 x 3,1024 x 3 4x4x4
1x1x1,2048
adaptive average pool, fc Ix1x1

F. Video darkness evaluation.

We explore a simple and effective video darkness evaluation
method to assess the darkness of a video. Given a video with
Ty frames V(T') = I, Io, ..., I, . The video frame is denoted
as Sy(z,y),z=1,2,..., M,y =1,2,..., N., where S, denotes
the pixel value and M, N represent the height and width of
the video frame, respectively. The darkness of a video is first
identified by thresholding the statistical quantity:

LY, S

Im
t M x N

12)
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Fig. 3. The architecture of the dark video enhancement model. The inConv and outConv denote the first and last convolutional layers, respectively. DWConv

represents the depthwise convolution.
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13)

S is a constant, which is defined as the expectation value
of the global average brightness value of the normal bright
frames. Following [68], we set S, = 112 for 8-bit images. In
practice, we do not use all video frames but adopt a segment-
based sampling strategy. Specifically, we first divide a video
evenly into 8 segments and then randomly select a frame from
each segment for evaluation.

The input video is judged as dark if Dv < —7 , and
bright if Dv >= —7. Where 7 is the threshold, and 7 is
set experimentally in consideration of the average darkness of
the ARID dataset.

1 Dv < —1

F(Dv) =
(Dv) 0 Otherwise

(14)
The proposed video darkness evaluation method, which helps
selecting the extremely dark videos to form our dataset Dark-
48 by assessing the video darkness of the existing action
recognition datasets.

IV. EXPERIMENTS

In this section, we test the performance of the proposed
DTCM method by conducting extensive experiments. First,
we introduce the video datasets and the implementation details.
Importantly, the dataset Dark-48, which is collected by us from
the existing video action recognition datasets with extremely
dark videos cover more action classes, is presented. Second,
we compare our DTCM with the state-of-the-arts. Third, the
ablation studies are performed on the ARID [7] dataset split-
1 for analyzation. Finally, some visual results are shown to
further illustrate our DTCM method.

Dark video datasets. ARID [7] includes 3784 videos with
11 action categories, and all of them are collected in low-
light environments. The ARID dataset is used for the 4th
UG2+ Workshop and attracted a lot of attention. The dataset
UAVHuman-Fisheye [32] contains 22,476 videos and nearly
half of them are dark. Accordingly, for our experiments, we
prefer the ARID dataset to the UAVHuman-Fisheye dataset,
since ARID is specially designed for recognizing human
actions in dark videos.

TABLE 11
STATISTICS COMPARISON OF THE DARK ACTION RECOGNITION DATASETS
ARID AND OUR DARK-48. ‘ACTIONS’, SPECIFIES THE NUMBER OF
ACTION CLASSES; ‘SCENES’, THE NUMBER OF SCENES THAT THE VIDEOS
ARE COLLECTED IN; ‘TOTAL’, IS THE TOTAL NUMBER OF CLIPS.

Dataset Actions | Scenes | Total
ARID 11 18 3784
Dark-48 48 > 40 8815
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Fig. 4. Example classes from the UCF101, UAV-Human, ARID and our Dark-
48 datasets. Note that the examples in UCF101 are normal bright videos.

Dark-48. We find that there are some limitations of the
ARID dataset, such as the videos amount is not large (3784
videos) and the action classes is not abundant (11 classes).
Besides, the dark semantic information is not rich enough
since the videos are collected in only 18 scenes [7]. However,
it is difficult to build a completely new dark video dataset
with much larger number of videos and action categories.
As a compromise, we collect the useful dark videos from
current benchmark datasets in an economical way. To align
with the darkness of the ARID dataset, first, we evaluate the
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Fig. 5. The video distribution for all action classes in the proposed dataset Dark-48. The pastel blue and muted blue bars indicate the number of videos in
the training and testing sets, respectively. The ratio of the training set to the testing set is 4:1. Each action class in our Dark-48 contains at least 100 dark

videos. There are three splits and we show split 1 here.

darkness of every ARID video by using our designed video
darkness evaluation measure E.q 13, and set 7 to be the
average darkness of all ARID videos (7 = 0.877). Second,
we access the darkness of the videos from Kinetics700 [45]
and MiT [44], and select the dark videos via E.q 14. Third,
we count the categories of the selected dark videos and keep
the categories that have more than 100 dark videos. Fourth,
the training and testing sets are partitioned by splitting the
videos with 80% to the training set, and the remaining 20%
to the testing set. Following UCF101 [69], we also make three
training/testing splits. In this way, the dark video dataset Dark-
48 is constructed, which contains 8815 dark videos belong
to 48 action classes. Some example classes in extremely
dark conditions from the UCF101, UAV-Human, ARID and
our Dark-48 datasets are shown in Figure 4. The statistic
comparison between our Dark-48 and ARID is reported in
Table II, and the distribution of videos among all action classes
in Dark-48 is displayed in Fig. 5.

Training. In our experiments, the dense sampling strat-
egy [29] is adopted to sample 7' = 16 or 7' = 64 frames from
each dark video. For ARID [7], each video frame is resized
to 320 x 240; For UAVHuman [32], each fisheye video frame
is center cropped to 128 x 128 to degrade the effect of image
distortion. For all datasets, a crop of 112 x 112 is randomly
performed for the training inputs. The model is fine-tuned from
the Kinetics400 pre-trained weights. The batch size is set to 4,
the initial learning rate is le-5, and the total training epoch is
set as 50. AdamW [80] is applied to optimize the parameters.

Testing. Following the common practise [60], [81], we
choose the efficient testing scheme named 1-clip and center-
crop, where only a single clip with frames center-cropped

to 112 x 112 is used for evaluation. We do not utilize the
computation expensive protocol [81], due to the testing results
from the efficient protocol are good enough. For ARID [7],
the average accuracy of Top-1 and Top-5 on the three splits
are reported. For UAVHuman-Fisheye [32], following the
common practise [32], where the accuracy of top-1 and top-5
on the split-1 are reported.

A. Comparison with the state-of-the-arts

We extensively compare our DTCM with the state-of-
the-art methods on the datasets of ARID [7], UAVHuman-
Fisheye [32] and our Dark-48. We mainly report the perfor-
mance of the proposed DTCM with 64-frame inputs.

In Table III, the comparison and analysis on the ARID
dataset is presented. In the upper part, the results are copied
directly from the ARID [7] benchmark. The results of Dark-
Light [1], Delta Sampling Resnet-BERT [21] and MRAN [21]
are directly copied from the corresponding papers. Other
results are our reproduction. Compared to the previous best
results of DarkLight-R(2+1)D, we only use 6.4% GFLOPs
and 71.3% parameters, while obtaining 2.32% improvement on
the Top-1 accuracy (96.36% vs 94.04%). In addition, we fine-
tune the transfomer-based models [30], [31], [77] and com-
pare them with our DTCM. Although the transformer-based
methods show good performance, for the Top-1 accuracy, our
DTCM surpasses TimeSformer-L [30] by 14.97% (96.36%
vs. 81.39%), Video-Swin-B by 6.57% (96.36% vs. 89.79%),
and MVIT-B by 4.93% (96.36% vs. 91.43%), respectively.
The DTCM model is less computationally intensive (43.24 vs.
2380) and has fewer parameters (47.47 vs. 121.41) compared
to the TimeSformer-L model. It also requires less computation
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TABLE III
COMPARISON WITH THE STATE-OF-THE-ARTS ON THE ARID DATASET. “INPUTS” INDICATES # TEMPORAL SIZE(T) x # SPATIAL SIZE(H x W,H=W). MIT

DENOTES MOMENTS IN THE TIME DATASET [

]. K400 REPRESENTS THE KINETICS400 DATASET [4], AND K700 1S THE KINETICS700 DATASET [45].

Models Inputs Pretrained GFLOPs | Params(M) | Top-1(%) | Top-5(%)
VGG(Two-stream) [70] 16 x 2242 ImageNet - 138 32.08 90.76
TSN(Two-stream) [71] 16 x 2242 ImageNet - - 57.96 94.17
I3D(Two-stream) [4] 16 x 2242 ImageNet - 12.29 72.78 99.39
C3D [72] 16 x 2242 Scratch 132.21 181.12 40.34 94.17
Separable-3D [73] 16 x 2242 - - 42.16 93.44
3D-ShuffleNetV1 [74] 16 x 2242 K400 0.77 0.96 50.18 94.17
I3D-RGB [4] 16 x 2242 ImageNet 27.83 12.29 68.29 97.69
3D-ResNet-18 [29] 16 x 2242 K400 32.90 1.84 54.68 96.60
3D-ResNet-50 [29] 16 x 2242 K400 39.98 46.22 71.08 99.39
3D-ResNet-101 [29] 16 x 2242 K400 55.29 85.27 71.57 99.03
Pseudo-3D-199 [75] 16 x 2242 K400 - - 71.93 98.66
3D-ResNext-101 [29] 16 x 2242 K400 38.24 47.54 74.73 98.54
3D-MobilenetV1 [74] 64 x 11272 K400 0.95 3.31 40.37 87.13
3D-MobilenetV2 [74] 64 x 1122 K400 2.19 2.37 62.92 96.19
3D-ShufflenetV1 [74] 64 x 1122 K400 0.78 0.96 46.07 91.14
3D-ShufflenetV2 [74] 64 x 1122 K400 0.76 1.31 53.84 95.49
3D-Squeezenet [74] 64 x 1122 K400 3.66 1.84 47.47 92.01
R(2+1)D [76] 64 x 1122 K700 305.51 63.50 62.87 96.64
I3D-RGB [4] 64 x 1122 ImageNet 27.98 12.29 76.25 98.85
3D-ResNet-18 [29] 64 x 1122 | K700+MiT 33.28 33.21 64.02 96.18
3D-ResNet-50 [29] 64 x 1122 | K700+MiT 40.41 46.22 78.26 97.98
3D-ResNet-101 [29] 64 x 1122 | K700+MiT 55.72 85.27 81.11 98.74
3D-ResNext-101 [29] 64 x 1122 K400 38.47 47.54 86.36 99.52
DarkLight-ResNext101 [1] 64 x 1122 K400 141.14 97.97 87.27 99.47
DarkLight-R(2+1)D [1] 64 x 1122 1G-65M 674.84 66.73 94.04 99.87
Delta Sampling Resnet-BERT [21] | 64 x 1122 K400 - - 90.46 -
ACAN [19] 64 x 1122 K400 - - 58.00 -
MRAN [21] 64 x 1122 K400 - - 93.73 -
TimeSformer-L [31] 8 x 2242 K400 2380 121.41 81.39 98.26
Video-Swin-B [31] 32 x 2242 K400 282 88.13 89.79 99.53
MVIT-B, 64x3 [77] 64 x 2242 K400 455 36.65 91.43 99.72
DTCM 16 x 2242 K400 43.01 47.57 82.38 98.93
DTCM 64 x 1122 K400 43.24 47.57 96.36 99.92
TABLE IV
COMPARISON WITH THE STATE-OF-THE-ARTS ON THE UAVHUMAN-FISHEYE DATASET.
Models Inputs Pretrained | GFLOPs | Params(M) | Top-1(%) | Top-5(%)
3D-MobilenetV1 [74] | 64 x 1122 K400 0.95 3.31 2.97 10.89
3D-MobilenetV2 [74] | 64 x 1122 K400 2.19 2.37 5.93 18.04
3D-ShufflenetV1 [74] | 64 x 1122 K400 0.78 0.96 5.49 16.48
3D-ShufflenetV2 [74] | 64 x 1122 K400 0.76 1.31 - -
3D-Squeezenet [74] 64 x 1122 K400 3.66 1.84 6.95 19.53
3D-ResNet-18 [29] 64 x 1122 K400 33.28 33.21 18.25 36.28
3D-ResNet-50 [29] 64 x 1122 K400 40.41 46.22 20.16 36.94
3D-ResNet-101 [29] 64 x 1122 K400 55.72 85.27 21.78 38.74
3D-ResNext-101 [29] | 64 x 1122 K400 38.47 47.54 22.30 42.27
GT-I3D [32] 64 x 1122 K400 - - 23.24 -
DTCM 64 x 1122 K400 43.24 47.57 27.43 45.28

than the Video-Swin-B and MviT-B models (43.24 vs. 282
and 43.23 vs. 455) and achieves better results. Noticeably,
ACAN [19] and MRAN [21] are cross-domain adaptation
methods and they require additional data from the dataset
HMDB-51 [82] for training. Even with no additional data used,
our DTCM outperforms MRAN [21] by 2.63% (96.36% vs.
93.73%) in accuracy.

In Table IV, the comparison and analysis on the
UAVHuman-Fisheye dataset is presented. Remarkably, our
DTCM also achieves the best performance, where its Top-1
accuracy is 27.43% and Top-5 accuracy is 45.28%, which sig-
nificantly exceeds the current advanced method GT-13D [32]
by 4.19% (27.43% vs 23.24%) on the Top-1 accuracy.

In Table V, the comparison and analysis on our constructed
Dark-48 dataset is presented. Since the dark videos in Dark-
48 are collected from the previous benchmarks MiVT [44]
and Kinetics700 [45], the models, which are pretrained on
MiVT and Kinetics700, may have remembered their ground
truth. To make a fair comparison, we retrain these models
on the Kinetics400 dataset with the validation dark videos
removed. As we introduced in Section IV that Dark-48 is
very challenging, the 2D CNN-based and 3D CNN-based
action recognition methods have poor performance. Specifi-
cally, the representative methods TSM [66] has only 36.46%
Top-1 accuracy, and SlowFast [79] has only 39.58% Top-1
accuracy. In contrast, the transformer-based methods obtain
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TABLE V
COMPARISON WITH THE STATE-OF-THE-ARTS ON OUR CONSTRUCTED DARK-48 DATASET. “K400%” DENOTES THAT THE MODEL IS PRE-TRAINED ON
THE FILTERED K400 VERSION.

Models Inputs Pretrained | GFLOPs | Params(M) | Top-1(%) | Top-5(%)
3D-MobilenetV1 [74] 64 x 1122 K400 0.95 3.31 23.37 52.34
3D-MobilenetV2 [74] 64 x 1122 K400+ 2.19 2.37 24.92 56.19
3D-ShufflenetV1 [74] 64 x 1122 K400+ 0.78 0.96 26.71 58.17
3D-ShufflenetV2 [74] 64 x 1122 K400+ 0.76 1.31 27.42 62.43
3D-Squeezenet [74] 64 x 1122 K400+ 3.66 1.84 28.45 62.11
R(2+1)D [76] 64 x 1122 K400 305.51 63.50 31.74 64.42
I3D-RGB [4] 64 x 1122 | ImageNet 27.98 12.29 32.25 65.35
3D-ResNet-50 [29] 64 x 1122 K400 40.41 46.22 34.26 66.82
3D-ResNet-101 [29] 64 x 1122 K400 55.72 85.27 36.11 68.74
3D-ResNext-101 [29] 64 x 1122 K400 38.47 47.54 37.23 68.86
TSN [71] 8 x 2242 K400 33.43 24.3 26.04 58.82
TSM [66] 8 x 2242 K400x% 3347 24.3 36.46 67.26
TIN [78] 8 x 2242 K400 32.96 23.90 33.38 64.97
SlowFast16+64 [79] 64 x 2242 K400 234.32 32.93 39.58 69.19
TimeSformer-L [30] 8 x 2242 K400 2380 121.41 43.27 74.62
Video-Swin-B [31] 32 x 2242 K400 282 88.13 41.92 72.51
MVIT-B, 64x3 [77] 64 x 2242 K400 455 36.65 40.37 70.91
DarkLight-ResNext101 [1] | 64 x 1127 K400+ 141.14 97.97 42.27 70.47
DTCM 64 x 1122 K400+ 43.24 47.57 46.68 75.92

higher accuracy, e.g., TimeSformer-L [
1 accuracy, Video-Swin-B [31] gets 41.92% Top-1 accuracy,
and MViT-B [77] gets 40.37% Top-1 accuracy. However, these
methods require much higher computation cost. Importantly,
our DTCM outperforms all of them by a large margin, which
achieves 46.68% Top-1 accuracy that surpasses the previous
best method TimeSformer-L [30] by 3.41%.

] gets 43.27% Top-

B. Ablation studies

One-stage joint training. To illustrate the effectiveness of
our one-stage joint training strategy, we compare it with the
prior two-stage setting. In particular, the two-stage training is
generally conducted as follows: pre-enhance the dark video
frames first, then use the enhanced video frames for action
recognition training. In contrast, the one-stage joint training
of us can be implemented in two types of settings: one is to
optimize the entire network with the usage of only the action
recognition loss Lar (see Eq. 6), and the other utilizes the
joint loss Liotq; (see Eq. 7). As shown in Table VI, compared
to the two-stage training setting, our one-stage joint training
strategy boosts the performance by at least 1.37% (86.20%
vs 84.83%) in the Top-1 accuracy. Remarkably, when using
the well-designed L;.tq; loss, the Top-1 accuracy is largely
improved by 10.43% (95.26% vs 84.83%).

TABLE VI
PERFORMANCE OF DIFFERENT TRAINING SETTINGS ON ARID.

Settings Top-1(%) | Top-5(%)

two-stage 84.83 92.76
Lagr 86.20 94.64

one-stage | ;- | 9526 98.53

Selection of a. o determines the impact of the dark video
enhancement component in our DTCM. Increasing the value of
« means to increase the impact of dark enhancement. Different
a (e.g. a = 10" n —2,—1,0,1) are tried for finding
the most suitable one. As shown in Table VII, when « is

too small, the increased useful information contained in the
enhanced frames is limited, leading to the action recognition
accuracy improvement is low. When « is too large, the
action recognition accuracy improvement is also low, because
of the model enhances too much unnecessary information.
Eventually, we choose a = 0.1 for our method DTCM.

TABLE VII
PERFORMANCE OF DIFFERENT & ON THE ARID DATASET. WE INCREASE
THE VALUE OF @ EXPONENTIALLY.

0.01
95.6

0.1 1
96.8 | 96.3

10
95.3

o
Top-1(%)

Selection of Wgrec. Wgepre, which is the weight of
the spatio-temporal consistency loss, determines the spatio-
temporal smoothness of the enhanced video frames. We em-
pirically test different Wgpe values i.e. Wgpre = 2n,n =
0,1,2,3,4,5. As shown in Table VIII, the spatio-temporal
smoothness is insufficient when Wgrc is too small, resulting
in low action recognition accuracy improvement. When W
is too large, the action recognition accuracy improvement is
also low, due to the disturbance of the enhancement process.
Accordingly, we select Wgrc = 4. Furthermore, we compare
the results of with/without (Wsre # 0/Were 0) the
spatio-temporal consistency learning, and find that learning
the spatio-temporal consistency boosts the action recognition
accuracy significantly by 9.1% (96.2% vs. 87.1%) in Top-1
accuracy. The experimental results verify that our designed
spatio-temporal consistency loss is crucial and useful for
action recognition in dark videos.

TABLE VIII
PERFORMANCE OF DIFFERENT W g ON THE ARID DATASET.
Wsrc 0 2 4 6 8 10
Top-1(%) | 87.1 | 96.5 | 97.1 | 96.5 | 96.3 | 96.2

Effect of different k. We share the dark enhancement
parameters in k neighboring video frames, and test k

Authorized licensed use limited to: Wuhan University. Downloaded on June 20,2023 at 00:48:22 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIP.2023.3286254

IEEE TRANSACTIONS ON IMAGE PROCESSING

2", n =0,1,...,4 experimentally. The computation efficiency
and the accuracy, which are compared with the baseline
Zero-DCE [28], are shown in Table IX. In contrast to the
baseline, our method reduces the number of parameters by
about 70% (23.77k vs 79.42k), while boosts the dark action
recognition accuracy larger, where the Top-1 accuracy is
modified by 3.3% (+6.7% vs +3.4%). The variance of the
action recognition accuracy improvement is not large when
k <= 8. However, the performance drops sharply when k& > 8,
which could attribute to the destruction of the illumination
invariant assumption. Particularly, compared to the baseline,
when k = 4, the accuracy of our DTCM method is boosted
significantly by 3.1% (+6.5% vs +3.4%) while with needing
only 7.5% GFLOPs. Consequently, we set k = 4 for accuracy
and computation efficiency trade-off to our DTCM method.

TABLE IX
COMPUTATION CONSUMPTION AND ACCURACY COMPARISON WITH THE
USAGE OF DIFFERENT k ON THE ARID DATASET. REMARKABLY, OUR
DTCM METHOD DECREASES GFLOPS, PARAMS, AND MEMORY
FOOTPRINT LARGELY.

Settings GFLOPs | Params(k) | Mem(M) | A Top-1(%)
Baseline 63.77 79.42 5269 +3.4
Ours(k=1) 19.08 23.77 3037 +6.7
Ours(k=2) 9.55 23.77 2432 +6.4
Ours(k=4) 4.77 23.77 2073 +6.5
Ours(k=8) 2.38 23.77 1737 +6.3
Ours(k=16) 1.19 23.77 1663 +3.7

C. Generalization

The proposed DTCM has a strong generalization capacity,
which can use various action recognition network as the action
classifier. Table X shows the Top-1 accuracy with the action
classifiers of TSM [66], 3D-ResNet50 [29], I3D [4], and
Video-Swin-B [31] on the ARID dataset. Compared to these
baseline backbones, our DTCM improves the accuracy by at
least 2.08% (78.33% vs 76.25%) consistently.

TABLE X
GENERALIZATION CAPACITY OF THE PROPOSED DTCM METHOD ON
DIFFERENT 3D-CNN BACKBONES.

TSM MobileV2 | Res50 13D Swin-B
Baseline 61.34 47.92 7426 | 76.25 89.79
DTCM 63.75 53.70 80.05 78.33 92.35
ATop—1 | +2.41 +5.78 +5.79 | +2.08 +2.56

D. Empirical Analysis

To validate whether our DTCM method can maintain spatio-
temporal consistency to benefit dark video based action recog-
nition, several empirical analyses are conducted.

Effect of spatio-temporal inconsistency. To reveal the
relationship between spatio-temporal inconsistency of dark
video enhancement and action recognition performance, we
calculate the spatio-temporal inconsistency value of the videos
that are enhanced by different dark enhancement strategies in
the ARID dataset by E.q 4. The results are shown in Table XI.
It can be seen that the methods e.g. BIMEF, LIME, and KinD,

10

TABLE XI
PERFORMANCE OF DIFFERENT ENHANCEMENT METHODS USED FOR DARK
VIDEO ACTION RECOGNITION ON THE ARID DATASET. 3D-RESNEXT-101
IS USED HERE AS THE ACTION CLASSIFIER.

Methods Spatio-temporal Top-1(%)
inconsistency

No Enhancement - 75.21
BIMEF [23] 0.45 72.49(-2.72)
LIME [36] 0.62 73.67(-1.54)
KinD [37] 0.53 70.53(-4.68)
GIC [33] 0.08 78.46(+3.25)
StableLLVE [26] 0.10 79.62(+4.41)
DTCM(Ours) 0.15 82.74(+7.53)

RGB Diff.

LIME-diff

KinD-diff

GIC-diff

StableLLVE-
-diff

Ours-diff

Fig. 6. RGB-Difference comparison of different dark enhancement methods.
(1) The upper part shows the dark video frames on the ARID dataset and
their corresponding RGB-Difference without conducting dark enhancement.
(2) The middle part shows the RGB-Difference of methods LIME [36] and
KinD [37], which are failed to improve the action recognition performance
in dark videos. (3) The lower part shows the RGB-Difference of the methods
GIC [33], StableLLVE [26] and our DTCM, which significantly improve the
performance of action recognition in dark videos.

Wsrc=4

Wsrc=8 Wsrc=10

Ground Truth

Fig. 7. DTCM enjoys great flexibility in learning spatio-temporal consistency
by adjusting Wsrc.
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Fig. 8. Examples of the proposed DTCM method for dark video enhancement. In each row, the left four video frames, which are recovered by our dark
video enhancement strategy, show one human action that performs from start to end, and the right one is the original dark video frame (start) that is used for

comparison. These videos are selected from the ARID [7] dataset.

which have high spatio-temporal inconsistency, are failed
to improve the Top-1 accuracy of dark video based action
recognition. In contrast, the methods e.g. GIC, StableLLVE,
and our DTCM, which have maintained the spatio-temporal
consistency well, are able to improve the Top-1 accuracy of
dark video based action recognition successfully.

Besides, we also find that too strong spatio-temporal con-
sistency constraint would lead to performance degradation, i.e.
GIC has lower spatio-temporal inconsistency than StableLLVE
(GIC:0.08 vs StableLLVE:0.10), but StableLLVE gets higher
performance modification (StableLLVE:+4.41 vs. GIC:+3.25).
Remarkably, the proposed DTCM method enjoys great flexi-
bility in controlling the spatio-temporal consistency constraint
by adjusting Wgrc. Benefiting from the maintenance and
flexible adjustment capacity on spatio-temporal consistency,
our DTCM achieves the best performance, e.g. its Top-1
accuracy is increased by 7.53% for the upmost.

Spatio-temporal consistency visualization. We compare
the RGB-Difference of several dark image enhancement meth-
ods in Fig. 6 to further explore the importance of spatio-
temporal consistency for video action recognition in dark.
LIME and GIC are the traditional methods, and KinD and
StableLLVE are the deep learning-based methods. Methods
in the middle part, which produce confused RGB-difference

(chaotic and unclear), fail to improve the action recognition
performance in dark videos. Methods in the bottom part,
i.e. GIC, StableLLVE, and our DTCM, which generate clear
RGB-Difference, success to improve the action recognition
performance in dark videos. The clean static background and
clear motion boundaries indicating that the spatio-temporal
consistency is well preserved in these methods. In summary,
only the dark enhancement methods, which can maintain the
spatio-temporal consistency of the dark video, are beneficial
for dark video action recognition.

Flexibility of DTCM in preserving spatio-temporal con-
sistency. Fig. 7 shows the RGB-Difference of the proposed
DTCM with different Wgrc. The rightmost side is the RGB-
Difference of the raw dark video frames (i.e. the ground
truth). DTCM can gain different spatio-temporal smoothness
by adjusting the value of Wgrc to select the most suitable
one, this is consistent with our analysis in Table XI.

E. Visual quality analysis

Fig. 8 reveals that the proposed DTCM can not only boost
the accuracy of action recognition but also greatly enhance
the visibility of the low-light video. In particular, DTCM
generates admirable visual results, where the enhanced dark

Authorized licensed use limited to: Wuhan University. Downloaded on June 20,2023 at 00:48:22 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIP.2023.3286254

IEEE TRANSACTIONS ON IMAGE PROCESSING

video frames are clear and bright, the color is uniform and the
border is obvious. These advantages promote the usage range
of our DTCM for real-world application, since there is a great
demand to improve both the action recognition accuracy and
the low-light video’s visual quality, e.g. video surveillance.

V. CONCLUSION

In this work, we have presented a unified, single-stage
training framework, termed DTCM, specifically designed for
effective action recognition in low-light video scenarios. The
core contributions of our DTCM are that 1) optimizing dark
video enhancement and human action classification interac-
tively in a one-stage pipeline with fast speed, 2) developing
a process that ensures the preservation of spatio-temporal
consistency in the enhanced frames of dark videos, and 3)
empowering a video-based action recognition model, which
is originally pre-trained on bright videos, to extract and
learn valuable spatio-temporal features directly from low-light
video scenarios. Benefiting from the newly designed network
architecture and the particularly formulated loss functions,
our DTCM enjoys high flexibility, efficiency, and accuracy.
Extensive experiments on benchmark datasets demonstrate that
the proposed DTCM method outperforms the state-of-the-
arts on recognizing human actions in dark videos for a large
margin.
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