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Consistent 3D Hand Reconstruction in Video
via Self-Supervised Learning
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Abstract—We present a method for reconstructing accurate and consistent 3D hands from a monocular video. We observe that the
detected 2D hand keypoints and the image texture provide important cues about the geometry and texture of the 3D hand, which can
reduce or even eliminate the requirement on 3D hand annotation. Accordingly, in this work, we propose S2HAND, a self-supervised
3D hand reconstruction model, that can jointly estimate pose, shape, texture, and the camera viewpoint from a single RGB input
through the supervision of easily accessible 2D detected keypoints. We leverage the continuous hand motion information contained in
the unlabeled video data and explore S2HAND(V), which uses a set of weights shared S2HAND to process each frame and exploits
additional motion, texture, and shape consistency constrains to obtain more accurate hand poses, and more consistent shapes and
textures. Experiments on benchmark datasets demonstrate that our self-supervised method produces comparable hand reconstruction
performance compared with the recent full-supervised methods in single-frame as input setup, and notably improves the reconstruction
accuracy and consistency when using the video training data.

Index Terms—hand pose estimation, 3D hand reconstruction, video analysis, self-supervision
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1 INTRODUCTION

1 HANDS play a central role in the interaction between2

humans and the environment, from physical contact3

and grasping to daily communications via hand gesture.4

Learning 3D hand reconstruction is the preliminary step5

for many computer vision applications such as augmented6

reality [1], sign language translation [2], [3], action recog-7

nition [4], [5], and human-computer interaction [6], [7], [8].8

However, due to diverse hand configurations and interac-9

tion with the environment, 3D hand reconstruction remains10

a challenging problem, especially when the task relies on11

monocular data as input.12

Compared with multi-view images [9], [10], [11], [12]13

and depth maps [13], [14], [15], [16], [17], the monocular14

hand images are more common in practice. In recent years,15

we have witnessed many efforts in recovering 3D shapes of16

human hands from single-view RGB images. For example,17

[18], [19], [20], [21], [22] were proposed to predict 3D hand18

pose from an RGB image. However, they only represent the19

3D hand through sparse joints, and ignore the 3D shape20

information, which are required for some applications such21

as grasping objects with virtual hands [6]. To better cap-22

ture the surface information of the hand, previous studies23

predict the triangle mesh either via regressing per-vertex24

coordinates [23], [24] or by deforming a parametric hand25

model [25], [26]. Outputting such high-dimensional repre-26
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Fig. 1: Given a collection of unlabeled hand images or videos,
we learn a 3D hand reconstruction network in a self-supervised
manner. Top: the training uses unlabeled hand images from
image collections or video sequences and their corresponding
noisy detected 2D keypoints. Bottom: our model outputs accu-
rate hand joints and shapes, as well as vivid hand textures.

sentations from 2D input is challenging for neural networks 27

to learn. As a result, the training process relies heavily on 28

3D hand annotations such as dense hand scans, model- 29

fitted parametric hand mesh, or human-annotated 3D joints. 30

Besides, the hand texture is important in some applications, 31

such as vivid hands reconstruction in immersive virtual re- 32

ality. But only recent work try to explore parametric texture 33

estimation in a learning-based hand recovery system [27], 34

while most previous work of 3D hand reconstruction do not 35

consider texture modeling [27]. 36

One of our key observations is that the 2D cues in the 37
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hand image are quite informative to reconstruct the 3D hand38

model in the real world. The 2D hand keypoints contain rich39

structural information, and the 2D image contains abundant40

texture and shape information. Both are important for re-41

ducing the use of expensive 3D annotations but have not42

been fully investigated. Leveraging these cues, we could43

directly use 2D annotations and the input image to learn44

the geometry and texture representations without relying45

on 3D annotations [21]. However, it is still labor-consuming46

to annotate 2D hand keypoints per image. To completely47

save the manual annotation, we propose to extract 2D hand48

keypoints as well as geometric representations from the49

unlabeled hand image to help the shape reconstruction and50

use the texture information contained in the input image to51

help the texture modeling.52

Additionally, video sequences contain rich hand motion53

and more comprehensive appearance information. Usually,54

a frame-wise fully-supervised hand reconstruction model55

does not take these information into serious consideration56

since 3D annotations already provide a strong supervision.57

As a result, it is more difficult for a frame-wise model58

to produce consistent results from video frames compared59

to sequence-wise models, since no temporal information is60

utilized. Thereby, we propose to penalize the inconsistency61

of the output hand reconstructions from consecutive ob-62

servations of the same hand. In this way, motion prior in63

video is distilled in the frame-wise model to help reconstruct64

more accurate hand for every single frame. Notably, the65

constraints on the sequence output are also employed in66

a self-supervised manner.67

Driven by the above observations, this work aims to68

train an accurate 3D hand reconstruction network using69

only the supervision signals obtained from the input images70

or video sequences while eliminating manual annotations71

of the training images. To this end, we use an off-the-72

shelf 2D keypoint detector [28] to generate some noisy73

2D keypoints, and supervise the hand reconstruction by74

these noisy detected 2D keypoints and the input image.75

Although our reconstruction network relies on the pre-76

defined keypoint detector, we call it a self-supervised net-77

work, following the naming convention in the face recon-78

struction literature [29], [30] as only the self-annotation is79

provided to the training data. Further, we leverage the self-80

supervision signal embedded in the video sequence to help81

the network produce more accurate and temporally more82

coherent hand reconstructions. To learn in a self-supervised83

manner, there are several issues to be addressed. First, how84

to efficiently use joint-wise 2D keypoints to supervise the ill-85

posed monocular 3D hand reconstruction? Second, how to86

handle noise in the 2D detection output since our setting87

is without utilizing any ground truth annotation? Third,88

is it possible to make use of the continuous information89

contained in video sequences to encourage smoothness and90

consistency of reconstructed hands in a frame-wise model?91

To address the first issue, a model-based autoencoder is92

learned to estimate 3D joints and shape, where the output93

3D joints are projected into 2D image space and forced to94

align with the detected keypoints during training. However,95

if we only align keypoints in image space, invalid hand pose96

often occurs. This may be caused by an invalid 3D hand97

configuration which is still compatible with the projected98

2D keypoints. Furthermore, 2D keypoints cannot reduce the 99

scale ambiguity of the predicted 3D hand. Thus, we propose 100

to learn a series of priors embedded in the model-based 101

hand representations to help the neural network output 102

hand with a reasonable pose and size. 103

To address the second issue, a trainable 2D keypoint 104

estimator and a novel 2D-3D consistency loss are proposed. 105

The 2D keypoint estimator outputs joint-wise 2D keypoints 106

and the 2D-3D consistency loss links the 2D keypoint esti- 107

mator and the 3D reconstruction network to make the two 108

mutually beneficial to each other during the training. In 109

addition, we find that the detection accuracy of different 110

samples varies greatly, thus we propose to distinguish each 111

detection item to weigh its supervision strength accordingly. 112

To address the third issue, we decompose the hand mo- 113

tion into the joint rotations and ensure smooth rotations of 114

hand joints between frames by conforming to a quaternion- 115

based representation. Furthermore, a novel quaternion loss 116

function is proposed to allow all possible rotation speeds. 117

Besides motion consistency, hand appearance is another 118

main concern. A texture and shape (T&S) consistency loss 119

function is introduced to regularize the coherence of the 120

output hand texture and shape. 121

In brief, we present a self-supervised 3D hand recon- 122

struction model S2HAND and its advanced S2HAND(V ). 123

The models enable us to train neural networks that can 124

predict 3D pose, shape, texture and camera viewpoint from 125

images without any ground truth annotation of training 126

images, except that we use the outputs from a 2D keypoint 127

detector (see Fig. 1). Notably, S2HAND(V) is able to extract 128

informative supervision from unannotated videos to help 129

learn a better frame-wise model. In order to achieve this, 130

S2HAND(V) inputs the sequential data to multiple weight- 131

shared S2HAND models and employs proposed constraints 132

on the sequential output at the training stage. 133

The advantage of our proposed methods are summa- 134

rized as follows: 135

• We present the first self-supervised 3D hand recon- 136

struction models, which accurately output 3D joints, 137

mesh, and texture from a single image, without using 138

any annotated training data. 139

• We exploit an additional trainable 2D keypoint es- 140

timator to boost the 3D reconstruction through a 141

mutual improvement manner, in which a novel 2D- 142

3D consistency loss is constructed. 143

• We introduce a hand texture estimation module to 144

learn vivid hand texture via self-supervision. 145

• We benchmark self-supervised 3D hand reconstruc- 146

tion on some currently challenging datasets, where 147

our self-supervised method achieves comparable 148

performance to previous fully-supervised methods. 149

This work is an extension of our conference paper [31]. 150

The new contributions include: 151

• We extend our S2HAND model to the S2HAND(V) 152

model, which further exploits the self-supervision 153

signals embedded in video sequences. The improve- 154

ment in accuracy and smoothness is 3.5% and 3.1%, 155

respectively. 156

• We present a quaternion loss function, which is based 157

on an explored motion-aware joints rotation repre- 158
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sentation, to help learn smooth hand motion. Experi-159

ments demonstrate its significant advantage over the160

similar methods in both accuracy and smoothness.161

• We propose a texture and shape consistency regular-162

ization term to encourage coherent shape and texture163

reconstruction.164

• We illustrate that utilizing extra in-the-wild unla-165

beled training data can further boost the perfor-166

mance of our model.167

2 RELATED WORK168

Hand Pose and Shape Estimation. Researchers have devel-169

oped a lot of different methods in hand pose and shape170

estimation, such as regression-based method [22], [32], [33],171

[34], [35] and model-based method [36], [37], [38], [39]. Com-172

paring to hand pose which is represented by 3D coordinates173

of hand joints alone, hand mesh contains more detailed174

shape information and recently has become the focus in the175

research community. Several methods utilize the hand mesh176

topology to directly output 3D mesh vertices. E.g. [40], [41],177

[42] use the spiral convolution to recover hand mesh and178

[34], [43], [44] use the graph convolution to output mesh179

vertices. Although these methods introduce as few priors180

as possible, they require large amounts of annotated data181

for training. In this self-supervised work, we make use of182

the priors contained in the MANO hand model [45], where183

MANO can map pose and shape parameters to a triangle184

mesh [26], [46], [47], [48], to reduce reliance on the labeled185

training data.186

Because the parametric model contains abundant struc-187

ture priors of human hands, recent works integrate hand188

model as a differentiable layer in neural networks [25], [26],189

[46], [48], [49], [50], [51], [52]. Among them, [49], [51], [52]190

output a set of intermediate estimations, like segmentation191

mask and 2D keypoints, and then map these representations192

to the MANO parameters. Different from them, we aim at193

demonstrating the feasibility of a self-supervised framework194

using an intuitive autoencoder. We additionally output 2D195

keypoint estimation from another branch and utilize it only196

during training to facilitate 3D reconstruction. More gener-197

ally, recent methods [25], [26], [46], [48], [50] directly adopt198

an autoencoder that couples an image feature encoding199

stage with a model-based decoding stage. Unlike [25], [26],200

we focus on hand recovery and do not use any annotation201

about objects. More importantly, the above methods use202

3D annotations as supervision, while the proposed method203

does not rely on any ground truth annotations.204

3D Hand Pose and Shape Estimation with Limited205

Supervision. 2D annotation is cheaper than 3D annotation,206

but it is difficult to deal with the ambiguity of depth and207

scale. [19] uses a depth map to perform additional weak208

supervision to strengthen 2D supervision. [21] proposes209

the biomechanical constraints to help the network output210

feasible 3D hand configurations. [53] detects 2D hand key-211

points and directly fits a hand model to the 2D detection.212

[24] gathers a large-scale dataset through an automated213

data collection method similar to [53] and then applies214

the collected mesh as supervision. In this work, we limit215

biomechanical feasibility by introducing a set of constraints216

on the skin model instead of only imposing constraints on217

the skeleton as [21]. In contrast to [19], [24], our method is 218

designed to verify the feasibility of (noisy) 2D supervision 219

and avoids introducing any extra 2.5D or 3D data. 220

Self-supervised 3D Reconstruction. Recently, there are 221

methods that propose to learn 3D geometry from the monoc- 222

ular image only. For example, [54] presents an unsupervised 223

approach to learn 3D deformable objects from raw single- 224

view images, but they assume the object is perfectly sym- 225

metric, which is not the case in the hand reconstruction. 226

[55] removes keypoints from the supervision signals, but 227

it uses ground truth 2D silhouette as supervision and only 228

tackles categories with small intra-class shape differences, 229

such as birds, shoes, and cars. [56] exploits a self-supervised 230

contrastive learning for hand pose estimation, but only the 231

encoder is pretrained in the self-supervised manner. [57] 232

designs a self-supervised module to overcome inconsistency 233

between the 2D and 3D hand pose, but they only consider 234

the sparse joint keypoints. [58] explores a depth-based self- 235

supervised 3D hand pose estimation method, but the depth 236

image provides much stronger evidence and supervision 237

than the RGB image. Recently, [29], [30], [59] exploits a self- 238

supervised face reconstruction method with the usage of 3D 239

morphable model of face (3DMM) [60] and 2D landmarks 240

detection. Our approach is similar to them, but the hand 241

is non-flat and asymmetrical when compared with the 3D 242

face, and the hand suffers from more severe self-occlusion. 243

These characteristics make this self-supervised hand recon- 244

struction task more challenging. 245

Texture Modeling in Hand Recovery. [61], [62] exploit 246

shading and texture information to handle the self-occlusion 247

problem in the hand tracking system. Recently, [27] uses 248

principal component analysis (PCA) to build a parametric 249

texture model of hand from a set of textured scans. In 250

this work, we try to model texture from self-supervised 251

training without introducing extra data, and further inves- 252

tigate whether the texture modeling helps with the shape 253

modeling. 254

Motion Learning from Sequence Data for 3D Hand 255

Estimation. To leverage motion information contained in 256

sequence data, several methods have been proposed in 257

hand pose estimation. [25] uses the photometric consistency 258

between neighboring frames of sparsely annotated RGB 259

videos. [63] presents a graph-based method to exploit spatial 260

and temporal relationship for sequence pose estimation. 261

[64] utilizes the temporal information through bidirectional 262

inferences. [36], [65], [66] design a temporal consistency loss 263

for motion smoothness. However, these methods either are 264

specialized for motion generation or only impose a weak 265

regularization for motion smoothness. 266

There exists no approach to capture hand motion dy- 267

namics fundamentally, leading to limited benefits can be 268

gained from modeling motion. In this work, we aim to 269

exploit self-supervised information from hand motion dy- 270

namics. Unlike most of the previous approaches [67], [68], 271

[69], [70] which adopt recurrent or graph-based network 272

structure to learn hand motion in a sequence-to-sequence 273

manner, we instead use a motion-related loss function to 274

help our frame-wise model converges better and bridges 275

the gap with fully-supervised methods. 276

From the above analysis and comparison, we believe 277

that self-supervised 3D hand reconstruction is feasible and 278
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Fig. 2: Overview of the proposed models. The S2HAND(V) on the right learns to reconstruct consistent 3D hands from video
sequences without ground truth annotations based on S2HAND. Given an input image, the S2HAND model generates a 3D
textured hand with its corresponding multiple 2D representations through a 3D reconstruction network and a 2D keypoints
estimator. Effective loss functions and regularization terms are designed for self-supervised network training. Given a video
sequence, the S2HAND(V) model produces sequential outputs from several weight-shared S2HAND models with temporal
constraints. A quaternion loss and a T&S loss are presented to exploit continuous motion information to promote consistent hand
reconstruction. During the inference, only the 3D reconstruction network is utilized and the S2HAND(V) acts just like a specially
trained S2HAND due to weight sharing. The symbols used in this figure can be found in Section 3.2 and Section 3.3.

significant, but to the best of our knowledge, no such idea279

has been studied in this field. In this work, we fill this gap280

and propose the first self-supervised 3D hand reconstruc-281

tion model, and prove its effectiveness through extensive282

experiments.283

3 METHODOLOGY284

3.1 Overview285

Our method enables end-to-end learning of accurate and286

consistent 3D hand reconstruction from video sequences in a287

self-supervised manner through S2HAND(V) (Section 3.3),288

which is based on S2HAND (Section 3.2). The overview is289

illustrated in Fig. 2.290

The S2HAND model takes an image as input and gener-291

ates a textured 3D hand represented by pose, shape and tex-292

ture, along with corresponding lighting, camera viewpoint293

(Section 3.2.1 and 3.2.2) and multiple 2D representations in294

the image space (Section 3.2.3). Some efficient loss functions295

and regularization terms (Section 3.2.4) are explored to train296

the network without using ground truth annotations. The297

S2HAND(V) model takes video sequences as input and pro-298

duces consistent sequential outputs from multiple S2HAND299

models where their weights are shared. A quaternion loss300

(Section 3.3.1) and a T&S consistency loss (Section 3.3.2) are301

designed to train the network with temporal constraints. We302

describe the proposed method in detail as below.303

3.2 Self-supervised Hand Reconstruction from Image304

Collections305

The S2HAND model learns self-supervised 3D hand recon-306

struction from image collections via training a 3D hand307

reconstruction network with the help of a trainable 2D308

keypoints estimator (See Section 3.2.3).309

3.2.1 Deep Hand Encoding 310

Given an image I that contains a hand, the 3D hand recon- 311

struction network first extracts the feature maps with the 312

EfficientNet-b0 backbone [71], and then transforms them 313

into a geometry semantic code vector x and a texture 314

semantic code vector y. The geometry semantic code vector 315

x parameterizes the hand pose θ ∈ R30, shape β ∈ R10, 316

scale s ∈ R1, rotation R ∈ R3 and translation T ∈ R3 in 317

a unified manner: x = (θ, β, s,R, T ). The texture semantic 318

code vector y parameterizes the hand texture C ∈ R778×3
319

and scene lighting L ∈ R11 in a unified manner: y = (C,L). 320

3.2.2 Model-based Hand Decoding 321

Given the geometry semantic code vector x and the texture 322

semantic code vector y, our model-based decoder generates 323

a textured 3D hand model in the camera space. In the fol- 324

lowing, we will describe the used hand model and decoding 325

network in detail. 326

Pose and Shape Representation. The hand surface is 327

represented by a manifold triangle mesh M ≡ (V, F ) with 328

n = 778 vertices V = {vi ∈ R3|1 ≤ i ≤ n} and faces 329

F . The faces F indicates the connection of the vertices in 330

the hand surface, where we assume the face topology keeps 331

fixed. Given the mesh topology, a set of k = 21 joints [26] 332

J = {ji ∈ R3|1 ≤ i ≤ k} (as shown in Fig. 3A) can be 333

directly formulated from the hand mesh. Here, the hand 334

mesh and joints are recovered from the pose vector θ and 335

the shape vector β via MANO, where MANO is a low- 336

dimensional parametric model [45]. 337

3D Hand in Camera Space. After representing 3D hand 338

via MANO hand model from pose and shape parameters, 339

the mesh and joints are located in the hand-relative coor- 340

dinate systems. To represent the output joints and mesh in 341
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the camera coordinate system, we use the estimated scale,342

rotation and translation to conserve the original hand mesh343

M0 and joints J0 into the final representations in terms of:344

M = sM0R+ T and J = sJ0R+ T .345

Texture and Lighting Representation. We use per-face346

RGB value of 1538 faces to represent the texture of hand347

C = {ci ∈ R3|1 ≤ i ≤ n}, where ci yields the RGB values348

of vertex i. In our model, we use a simple ambient light and349

a directional light to simulate the lighting conditions [72].350

The lighting vector L parameterizes ambient light intensity351

la ∈ R1, ambient light color lac ∈ R3, directional light352

intensity ld ∈ R1, directional light color ldc ∈ R3, and di-353

rectional light direction nd ∈ R3 in a unified representation:354

L = (la, lac , l
d, ldc , n

d).355

3.2.3 2D Hand Representations356

A set of estimated 3D joints within the camera space can357

be projected into the image space by camera projection.358

Similarly, the output textured model can be formulated into359

a realistic 2D hand image through a neural renderer. In360

addition to the 2D keypoints projected from the model-361

based 3D joints, we can also estimate the 2D position of362

each keypoint in the input image. Here, we represent 2D363

hand with three modes and explore the complementarity364

among them.365

Joints Projection. Given a set of 3D joints in camera co-366

ordinates J and the intrinsic parameters of the camera, we367

use perspective camera projection Π to project 3D joints into368

a set of k = 21 2D joints Jpro = {jproi ∈ R2|1 ≤ i ≤ k},369

where jproi yields the position of the i-th joint in image UV370

coordinates: Jpro = Π(J).371

Image Formation. A 3D mesh renderer is used to conserve372

the triangle hand mesh into a 2D image, here we use the373

implementation1 of [72]. Given the 3D mesh M , the texture374

of the mesh C and the lighting L, the neural renderer ∆375

can generate a silhouette of hand Sre and a color image Ire:376

Sre, Ire = ∆(M,C,L).377

Extra 2D Joint Estimation. Projecting model-based 3D378

joints into 2D can help the projected 2D keypoints retain379

the structural information, but at the same time gives380

up the knowledge of per-joint prior. To address this is-381

sue, we additionally use a 2D keypoint estimator to di-382

rectly estimate a set of k = 21 independent 2D joints383

J2d = {j2di ∈ R2|1 ≤ i ≤ k}, where j2di indicates the posi-384

tion of the i-th joint in image UV coordinates. In our 2D385

keypoint estimator, a stacked hourglass network [73] along386

with an integral pose regression [74] is used. Note that the387

2D hand pose estimation module is optionally deployed in388

the training period and is not required during the inference.389

3.2.4 Training Objective390

Our overall training loss ES2HAND consists of three parts,391

i.e. a 3D branch loss E3d, a 2D branch loss E2d and a 2D-3D392

consistency loss Econs:393

ES2HAND = w3dE3d + w2dE2d + wconsEcons (1)

Note, E2d and Econs are optional and only used when the394

2D estimator is applied. The constant weights w3d, w2d and395

1. https://github.com/daniilidis-group/neural renderer

wcons balance the three terms. In the following, we describe 396

these loss terms in detail. 397

To train the model-based 3D hand decoder, we enforce 398

geometric alignment Egeo, photometric alignment Ephoto, 399

and statistical regularization Eregu: 400

E3d = wgeoEgeo + wphotoEphoto + wreguEregu (2)

Geometric Alignment. We propose a geometric alignment 401

loss Egeo based on the detected 2D keypoints which are 402

obtained through an implementation2 of [28]. The detected 403

2D keypoints L = {(jdei , coni)|1 ≤ i ≤ k} allocate each 404

keypoint with a 2D position jdei ∈ R2 and a 1D confi- 405

dence coni ∈ [0, 1]. The geometric alignment loss in the 406

2D image space consists of a joint location loss Eloc and 407

a bone orientation loss Eori. The joint location loss Eloc 408

enforces the projected 2D keypoints Jpro to be close to its 409

corresponding 2D detections Jde, and the bone orientation 410

loss Eori enforces the m = 20 bones of the keypoints in 411

these two sets to be aligned: 412

Eloc =
1

k

k∑

i=1

coniLSmoothL1(jdei , j
pro
i ) (3)

413

Eori =
1

m

m∑

i=1

conf bonei ‖ νdei − ν
pro
i ‖22 (4)

Here, a SmoothL1 loss [75] is used in Eq. 3 to make the 414

loss term to be more robust to local adjustment since the 415

detected keypoints are not fit well with the MANO key- 416

points. In Eq. 4, νdei and νproi are the normalized i-th bone 417

vector of the detected 2D joints and the projected 2D joints, 418

respectively, and conf bonei is the product of the confidence 419

of the two detected 2D joints of the i-th bone. The overall 420

geometric alignment loss Egeo is the weighted sum of Eloc 421

and Eori with a weighting factor wori: 422

Egeo = Eloc + woriEori (5)

Photometric Consistency. For the image formation, the 423

ideal result is the rendered color image Ire matches the 424

foreground hand of the input I . To this end, we employ a 425

photometric consistency which has two parts: the pixel loss 426

Epixel is computed by averaging the least absolute deviation 427

(L1) distance for all visible pixels to measure the pixel-wise 428

difference, and the structural similarity (SSIM) loss ESSIM 429

is estimated by evaluating the structural similarity between 430

the two images [76]: 431

Epixel =
confsum
| Sre |

∑

(u,v)∈Sre

‖ Iu,v − Ireu,v ‖1 (6)

432

ESSIM = 1− SSIM(I � Sre, Ire) (7)

Here, the rendered silhouette Sre is used to get the fore- 433

ground part of the input image for loss computation. In 434

Eq. 6, we use confsum, which is the sum of the detection 435

confidence of all keypoints, to distinguish different training 436

samples. This is because we think that low-confidence sam- 437

ples correspond to ambiguous texture confidence, e.g., the 438

detection confidence of an occluded hand is usually low. The 439

2. https://github.com/Hzzone/pytorch-openpose
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Fig. 3: (A)The joint skeleton structure. (B) A sample of bone
rotation angles. The five bones (−→01,−→05,−→09,−→013,−→017) on the palm
are fixed. Each finger has 3 bones, and the relative orientation of
each bone from its root bone is represented by azimuth, pitch,
and roll.

photometric consistency loss Ephoto is the weighted sum of440

Epixel and ESSIM with a weighting factor wSSIM :441

Ephoto = Epixel + wSSIMESSIM (8)

442 Statistical Regularization. During training, to make the443

results plausible, we introduce some regularization terms,444

including the shape regularization Eβ , the texture regular-445

ization EC , the scale regularization Es, and the 3D joints446

regularization EJ . The shape regularization term is defined447

as Eβ =‖ β − β̄ ‖ to encourage the estimated hand model448

shape β to be close to the average shape β̄ = ~0 ∈ R10.449

The texture regularization EC is used to penalize outlier450

RGB values. The scale regularization term Es is used to451

ensure the output hand has appropriate size, so as to help452

determining the depth of the output in this monocular453

3D reconstruction task. To enforce the regularizations on454

skeleton EJ , we define feasible range for each rotation angle455

ai (as shown in Fig. 3B) and penalize those who exceed456

the feasible threshold. The remaining EC , Es and EJ terms457

follow [31].458

The statistical regularization Eregu is the weighted sum459

of Eβ , EC , Es and EJ with weighting factors wC , ws and460

wJ :461

Eregu = Eβ + wCEC + wsEs + wJEJ (9)

2D Branch Loss. For the 2D keypoint estimator, we use a462

joint location loss as in Eq. 3 with replacing the projected 2D463

joint jproi by the estimated 2D joint j2di :464

E2d =
1

k

k∑

i=1

coniLSmoothL1(jdei , j
2d
i ) (10)

2D-3D Consistency Loss. Since the outputs of the 2D465

branch and the 3D branch are intended to represent the466

same hand in different spaces, they should be consistent467

when they are transferred to the same domain. Through468

this consistency, structural information contained in the 3D469

reconstruction network can be introduced into the 2D key-470

point estimator, and meanwhile the estimated 2D keypoints471

can provide joint-wise geometric cues for 3D hand recon-472

struction. To this end, we propose a novel 2D-3D consistency473

loss to link per projected 2D joint jproi with its corresponding 474

estimated 2D joint j2di : 475

Econs =
1

k

k∑

i=1

LSmoothL1(jproi , j2di ) (11)

3.3 Consistent Self-supervised Hand Reconstruction 476

from Video Sequences 477

The S2HAND(V) model learns consistent self-supervised 478

3D hand reconstruction from video sequences via training 479

weight-shared S2HAND models with temporal constraints, 480

including a quaternion loss and a T&S consistency loss. 481

3.3.1 Quaternion-based Motion Regularization 482

We reformulate hand motion in joint rotation perspective. 483

We choose the unit quaternion [77], [78], [79], [80] as our 484

joint rotation representation, which can represent spatial 485

orientations and rotations of elements in a convenient and 486

efficient way. The unit quaternion associated with a spatial 487

rotation is constructed as: 488

q =
(

cos(
α

2
), sin(

α

2
)~u
)

(12)

where α is the rotation angle and ~u denotes the rotation 489

axis in R3. Notably, q can represent both rotation and 490

orientation. 491

Smooth orientation transition qt between initial q0 joint 492

orientation and final q1 joint orientation is defined by a 493

unique axis ~v and corresponding rotation angle γ around 494

the axis. The transition process can be expressed as follows: 495

qt = (q1q
−1
0 )φ(t)q0 =

(
cos(

γ

2
), sin(

γ

2
)~v
)φ(t)

q0 (13)

where q−10 represents the inverse of q0, and the product 496

operation here is the Hamilton product. The φ(t) denotes a 497

monotonically non-decreasing function, ranging from 0 to 1 498

and controlls the orientation transition from q0 to q1. When 499

φ(t) equals 0 or 1, qt will equal to q0 and q1 respectively. 500

In order to reduce the computational cost brought by the 501

Hamilton product, we further rewrite Eq. 13 as a linear 502

combination of the two quaternions q0 and q1 : 503

qt = (q1q
−1
0 )φ(t)q0 = Norm [µ(t)q0 + ε(t)q1] (14)

where Norm[·] denotes normalization to ensure the result 504

is a unit quaternion. µ(t) and ε(t) are time-dependent 505

coefficients which are determined by φ(t). One instance of 506

Eq. 14 is Slerp [79], which is a widely used linear quaternion 507

interpolation method with constant rotation speed, assum- 508

ing φ(t) = t: 509

qt = (q1q
−1
0 )tq0 =

sin((1− t)η)

sin(η)
q0 +

sin(tη)

sin(η)
q1 (15)

where η is the included angle between q0 and q1 as two 510

vectors, which can be computed by: 511

η =
q1 · q0

‖q1‖ ‖q0‖
(16)

where · denotes inner product of two vectors and ‖·‖ is the 512

magnitude of a vector. 513

Instead of generating interpolated poses as psuedo- 514

labels with one specific φ(t) for supervision, we propose 515
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Fig. 4: Comparison between our quaternion loss and Slerp. The
circle represents a 2D projective plane of 4D unit quaternion
sphere. The red arch denotes the set of quaternion that satis-
fies Eq. 13, which ensures smooth orientation transition. The
equation in each circle represents the corresponding prior. The
remaining symbols can be found in Section 3.3. As can be seen,
both Slerp and quaternion loss has the prior to make sure Eq. 13
is satisfied. However Slerp has an additional prior φ(t) = t,
while our Quaternion loss covers all possible φ(t), which allows
smooth orientation transition at all possible speed.

a quaternion loss function to cover all possible joint rotation516

speeds as following:517

Equat =

∥∥∥∥∥
n−1∑

i=1

Ψ(Hi, Hi+1)−Ψ(H1, Hn)

∥∥∥∥∥ (17)

where Ψ is the function to compute the rotation angle γ518

between two quaternions, and Hi denotes the output hand519

pose represented in quaternion of frame i. In practice, Hi is520

the concatenation of i-th pose vector θi and i-th rotation Ri521

to cover all 21 hand joints:522

Hi = Quaternion(Concatenate[θi, Ri]) (18)

where Quaternion denotes the transformation from repre-523

sentation of MANO outputs to quaternion representation524

and Concatenate denotes the concatenation operation. The525

comparison between the proposed quaternion loss and Slerp526

is illustrated in Fig. 4.527

To understand the proposed quaternion loss, two points528

are important. One is that the quaternion interpolation is529

essentially finding a rotation curve through a fixed rotation530

axis between two poses, as suggested by Eq. 13. The other531

is that the rotation angle γ in the quaternion space relates532

to included angle η in vector space, as indicated by Eq. 14.533

Specifically:534

cos(
γ

2
) = cos(η) (19)

which provides an efficient way to compute γ and is derived535

from:536

<
(
q1q

−1
0

)
= <

(
cos(

γ

2
), sin(

γ

2
)~v
)

= ‖q1‖ ‖q0‖ cos(η)

(20)
where < represents the real part of a quaternion, q0, q1,537

γ and ~v are the same as before. ‖·‖ is the magnitude of a538

vector. η denotes the included angle between q0 and q1 as539

two vectors. Eq. 20 can be deduced by comparing the inner540

product and the Hamilton product of the q0 and q1.541

3.3.2 T&S Consistency Regularization 542

We introduce a regularization term on texture and shape to 543

consider consistency of hand appearance in videos. Since 544

texture is coupled with light, our T&S loss is formulated as: 545

ET&S =
n∑

i=1

∥∥∥CLi − CL
∥∥∥+

n∑

i=1

∥∥βi − β
∥∥ (21)

where CLi and βi are the i-th lighted texture and shape 546

of the sequential reconstruction output, CLi and βi are the 547

corresponding average of the sequential output. The lighted 548

texture CLi is computed following [72]: 549

CLi = (lalac + (nd · ni)ldldc )Ci (22)

where ni is the normal direction of Ci in canonical zero pose 550

[45] and the rest are defined in Section 3.2.1. 551

A low standard deviation of sequential hand appearance 552

reconstruction from video sequences is promoted by this 553

loss function. 554

3.3.3 Training Objective 555

Our overall training loss ES2HAND(V ) consists of three 556

parts, including a S2HAND loss ES2HAND, a quaternion 557

loss Equat and a T&S loss ET&S : 558

ES2HAND(V ) = ES2HAND + wquatEquat + wtsET&S (23)

where ES2HAND is the same as that in Section 3.2.4. For 559

Equat and ET&S , please refer to Section 3.3.1 and Sec- 560

tion 3.3.2 respectively. The constant weights wquat and wts 561

are used to balance the three terms. 562

4 EXPERIMENTS 563

4.1 Datasets 564

We evaluate the proposed methods on three datasets. Two 565

of them (FreiHAND and HO-3D) are challenging realistic 566

datasets, aiming for assessing 3D joints and 3D meshes with 567

hand-object interaction. The results are reported through the 568

online submission systems 3,4. The remaining one (STB) is a 569

hand-only video dataset. Besides, we adopt another dataset 570

(YT 3D) to provide in-the-wild data. 571

The FreiHAND dataset [48] is a large-scale real-world 572

dataset, which contains 32,560 training samples and 3,960 573

test samples. For each training sample, one real RGB image 574

and extra three images with different synthetic backgrounds 575

are provided. Part of the sample is a hand grabbing an 576

object, but it does not provide any annotations for the 577

foreground object, which poses additional challenges. 578

The HO-3D dataset [81] collects color images of a hand 579

interacting with an object. The dataset is made of 68 se- 580

quences, totaling 77,558 frames of 10 users manipulating 581

one among 10 different objects. The training set contains 582

66,034 images and the test set contains 11,524 images. The 583

objects in this dataset are larger than that in FreiHAND, 584

thus resulting in larger occlusions to hands. We use this 585

dataset in two cases. In the case of self-supervised hand 586

reconstruction from image collections with S2HAND, we do 587

not use the sequence information provided by HO-3D and 588

3. https://competitions.codalab.org/competitions/21238
4. https://competitions.codalab.org/competitions/22485



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

mix all sequences as a image collection. In the case of self-589

supervised hand reconstruction from video sequences with590

S2HAND(V), we make use of the sequence information591

and compose the training batch accordingly. Details can be592

found in Section 4.3.593

The STB dataset [82] is a hand-only dataset, which con-594

tains 12 sequences with 18000 frames in total. RGB images595

along with depth-images, 2D and 3D joint annotations are596

provided. We follow the splits in [82], using 10 sequences597

for training and 2 sequences for evaluation. We select this598

dataset to validate the proposed methods in the hand-only599

scenario.600

The YT 3D dataset [40] contains 116 in-the-wild videos,601

which is comprised of 102 train videos, 7 validation videos602

and 7 test videos, along with 47125, 1525 and 1525 hand603

annotations. We only use this dataset as extra in-the-wild604

training data in Section 4.5.3 without any annotations. Since605

the 102 train videos are edited with lots of cutaway and only606

part of videos are accessible due to copyright issues, we607

preprocess this dataset by filtering out unavailable videos608

and discontinuous hand motion frames according to the609

detected 2D keypoints, yielding 34 train videos containing610

21628 frames with detected 2D keypoints.611

4.2 Evaluation Metrics612

We evaluate 3D hand reconstruction by evaluating 3D joints613

and 3D meshes. For 3D joints, we report the mean per joint614

position error (MPJPE) in the Euclidean space for all joints615

on all test frames in cm and the area under the curve (AUC)616

of the PCK AUCJ. Here, the PCK refers to the percentage617

of correct keypoints. For 3D meshes, we report the mean618

per vertex position error (MPVPE) in the Euclidean space619

for all joints on all test frames in cm and the AUC of620

the percentage of correct vertex AUCV. We also compare621

the F-score [83] which is the harmonic mean of recall and622

precision for a given distance threshold. We report distance623

threshold at 5mm and 15mm and report F-score of mesh624

vertices at 5mm and 15mm by F5 and F15. Following the625

previous works [48], [81], we compare aligned prediction626

results with Procrustes alignment, and all 3D results are627

evaluated by the online evaluation system on FreiHAND628

and HO-3D. For 2D joints, we report the MPJPE in pixel629

and the curve plot of fraction of joints within distance.630

For smooth hand reconstruction, we report the acceleration631

error (ACC-ERR) and the acceleration(ACC) which are first632

proposed in [84]. ACC-ERR measures average difference633

between ground truth acceleration and the acceleration of634

the predicted 3D joints in mm/s2 while ACC calculates635

mean acceleration of the predicted 3D joints in mm/s2.636

Generally, lower ACC-ERR and ACC indicate smoother637

sequence predictions. For shape and texture consistency638

in sequence predictions, we report corresponding standard639

deviations (S.D.), in which low deviation means coherent640

and consistent sequence predictions. Specifically, we com-641

pute texture S.D. and shape S.D., which are the average642

of per dimensional S.D. of the lighted textures and shape643

parameters in sequence predictions respectively.644

4.3 Implementation Details645

Pytorch [85] is used for implementation. For the 3D recon-646

struction network, the EfficientNet-b0 [71] is pre-trained on647

Input Image MANO-CNN Ours

Input Image OpenPose Ours

Fig. 5: Qualitative comparison to OpenPose [28] and MANO-
CNN on the FreiHAND testing set. For OpenPose, we visualize
the detected 2D keypoints. For our method and MANO-CNN,
we visualize both the projected 2D keypoints and 3D mesh.

the ImageNet dataset. The 2D keypoint estimator along with 648

the 2D-3D consistency loss is optionally used. If we train 649

the whole network with the 2D keypoint estimator, a stage- 650

wise training scheme is used. We train the 2D keypoint 651

estimator and 3D reconstruction network by 90 epochs 652

separately, where E3d and E2d are used, respectively. The 653

initial learning rate is 10−3 and reduced by a factor of 2 654

after every 30 epochs. 655

When training S2HAND with image collections, we 656

finetune the whole network with ES2HAND by 60 epochs 657

with the learning rate initialized to 2.5× 10−4, and reduced 658

by a factor of 3 after every 20 epochs. We use Adam [86] 659

to optimize the network weights with a batch size of 64. 660

We train our model on two NVIDIA Tesla V100 GPUs, 661

which takes around 36 hours for training on FreiHAND. 662

Otherwise, when training S2HAND(V) with ES2HAND(V ), 663

the input remains 4D (B,C,H,W), but the sampling strategy 664

is different. Specifically, for a training batch, we first ran- 665

domly sample m sequences from the training sequences, 666

then randomly sample n frames in each of the sampled 667

sequences, finally combine these frames to compose a batch. 668

This results in a batch size of mn. In our experiments, we set 669

m equal to 64//n, where 64 follows the batch size in training 670

S2HAND and // represents floor division. We find n equals 671

3 (see Section 4.5.2 for the ablation study) gets the best 672

performance, thus we use it as the default setting. Notice 673

that all the sampling procedures take place during training. 674

For the stability of this sampling strategy, please refer to 675

Section 2 of the supplementary materials. The learning rate, 676

the reducing schedule, and the Adam optimizer are set the 677

same as before. For the weighting factors, we set w3d = 1, 678

w2d = 0.001, wcons= 0.0002, wgeo = 0.001, wphoto = 0.005, 679

wquat = 0.05, wts = 0.01, wregu = 0.01, wori = 100, 680

wSSIM = 0.2, wC = 0.5, ws = 10 and wJ = 10. Here 681

the weighting factors need to regard different fundamental 682

units of the losses, thus the magnitudes do not strictly 683

imply the importance. For how to select these weights and 684

the weights sensitivity, please refer to the supplementary 685

materials. 686
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TABLE 1: Comparison of main results on the FreiHAND testing set. The performance of our self-supervised method S2HAND is
comparable to the recent fully-supervised and weakly-supervised methods. [21]* also uses the synthetic training data with 3D
supervision. Note that FreiHAND is not presented with video sequences, which disables learning of S2HAND(V).

Supervision Method AUCJ↑ MPJPE↓ AUCV↑ MPVPE↓ F5↑ F15↑

3D

[48](2019) 0.35 3.50 0.74 1.32 0.43 0.90
[26](2019) 0.74 1.33 0.74 1.33 0.43 0.91
[46](2019) 0.78 1.10 0.78 1.09 0.52 0.93
[27](2020) 0.78 1.11 0.78 1.10 0.51 0.93

2D [21](2020)* 0.78 1.13 - - - -
- S2HAND 0.77 1.18 0.77 1.19 0.48 0.92

TABLE 2: Comparison of main results on the HO-3D testing set. Without using any object information and hand annotation, our
S2HAND model performs comparable with the recent fully-supervised methods [25]. Further with the temporal constraints, our
S2HAND(V) even surpasses [25].

Supervision Method AUCJ↑ MPJPE↓ AUCV↑ MPVPE↓ F5↑ F15↑

3D
[26](2019) - - - 1.30 0.42 0.90
[81](2020) - - - 1.06 0.51 0.94
[25](2020) 0.773 1.11 0.773 1.14 0.43 0.93

- S2HAND 0.773 1.14 0.777 1.12 0.45 0.93
S2HAND(V) 0.780 1.10 0.781 1.09 0.46 0.94

TABLE 3: Ablation studies on different losses used in our method on the FreiHAND testing set. Refer to Section 4.5.1 for details.
Losses MPJPE↓ MPVPE↓ AUCJ ↑ AUCV ↑ F5 ↑ F15 ↑Eloc Eregu Eori E2d, Econ Ephoto

X 1.97 2.31 0.611 0.545 0.257 0.763
X X 1.54 1.58 0.696 0.687 0.387 0.852
X X X 1.24 1.26 0.754 0.750 0.457 0.903
X X X X 1.22 1.24 0.759 0.754 0.468 0.909
X X X X 1.19 1.20 0.764 0.763 0.479 0.915
X X X X X 1.18 1.19 0.766 0.765 0.483 0.917

4.4 Comparison with State-of-the-art Methods687

We give comparison on FreiHAND with four recent model-688

based fully-supervised methods [26], [27], [46], [48] and a689

state-of-the-art weakly-supervised method [21] in Table 1.690

Note that [87] is not included here since it designs an691

advanced “image-to-lixel” prediction instead of directly692

regressing MANO parameters. Our approach S2HAND693

focuses on providing a self-supervised framework with694

lightweight components, where the hand regression scheme695

is still affected by highly non-linear mapping. Therefore,696

we make a fairer comparison with popular model-based697

methods [26], [27], [46], [48] to demonstrate the performance698

of this self-supervised approach. Without using any annota-699

tion, our approach S2HAND outperforms [26], [48] on all700

evaluation metrics and achieves comparable performance701

to [27], [46]. [21] only outputs 3D pose, and its pose per-702

formance is slightly better than our results on FreiHAND703

test set but with much more training data used including704

RHD dataset [22] (with 40,000+ synthetic images and 3D705

annotations) as well as 2D ground truth annotation of the706

FreiHAND.707

In the hand-object interaction scenario, we compare708

with three recent fully-supervised methods on HO-3D in709

Table 2. Compared to the hand branch of [26], both of our710

self-supervised models S2HAND and S2HAND(V) show711

higher mesh reconstruction performance where we get a712

14% and 16% reduction in MPVPE respectively. Compared713

with [25], which is a fully-supervised joint hand-object pose714

estimation method, our S2HAND obtains comparable joints715

and shape estimation results, while our S2HAND(V) even716

surpasses [25]. [81] gets slightly better shape estimation717

results than ours, probably due to the fact that they first718

estimate 2D keypoint positions using heatmaps and then fit719

MANO model to these keypoints. Since [21] utilizes a totally720

Fig. 6: Comparisons between our proposed self-supervised
(S.S.) methods and other SOTA fully-supervised (F.S.) methods
on the STB dataset (hand-only scenario).

different version of HO-3D that is published with HANDS 721

2019 Challenge5, we do not compare with it on HO-3D (not 722

shown in Table 2) as we do on FreiHAND. 723

In the hand-only scenario, we compare with the fully- 724

supervised methods [20], [22], [53], [88], [89] on STB in Fig. 6. 725

Some state-of-the-art fully-supervised methods (e.g. [50] 726

with 0.995 AUC and [90] with 0.997 AUC) are not included 727

in Fig. 6, because their PCK values are not provided and 728

they have similar performance with [20]. The proposed self- 729

supervised method S2HAND outperforms some previous 730

fully-supervised methods [22], [53], [88], and S2HAND(V) 731

further improves the performance of S2HAND. On the other 732

side, there is a certain gap between ours and the recent 733

fully-supervised methods [20], [89] since they have direct 734

5. https://sites.google.com/view/hands2019/challenge
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TABLE 4: Comparison of the accuracy of different motion-related constraints on the HO-3D testing set. Quaternion loss shows its
effectiveness over the similar loss functions on modeling smoothness.

Method AUCJ↑ MPJPE↓ AUCV↑ MPVPE↓ F5↑ F15↑
S2HAND 0.773 1.14 0.777 1.12 0.45 0.93

S2HAND(V) (w/ Temporal Loss [65]) 0.771 1.15 0.773 1.14 0.44 0.93
S2HAND(V) (w/ Smooth Loss [36]) 0.774 1.13 0.776 1.12 0.45 0.93
S2HAND(V) (w/ Quaternion Loss) 0.779 1.10 0.781 1.09 0.46 0.94

S2HAND(V) (w/ Quaternion Loss, T&S Loss) 0.780 1.10 0.781 1.09 0.46 0.94

TABLE 5: Comparison of the smoothoness performance of different motion-related constraints on the HO-3D dataset. Quaternion
loss gives the smoothest predictions and is highly in line with ACC and ACC-ERR.

Method Train set Test set
ACC-ERR↓ ACC↓ Quaternion Loss↓ ACC↓ Quaternion Loss↓

S2HAND 2.85 2.29 0.014 3.68 0.020
S2HAND(V) (w/ Temporal Loss [65]) 2.57 1.96 0.011 2.87 0.015
S2HAND(V) (w/ Smooth Loss [36]) 2.89 2.29 0.014 2.89 0.015
S2HAND(V) (w/ Quaternion Loss) 2.23 1.59 0.008 2.81 0.014
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Fig. 7: A comparison of 2D keypoint sets used or outputted at
the training stage on FreiHAND. The fraction of frames within
the maximum joint distance is plotted. Refer to Section 4.5.1 for
details.

3D supervision.735

In Fig. 5, we show 2D keypoint detection from Open-736

Pose [28] and our S2HAND results of difficult samples. We737

also compare the reconstruction results with MANO-CNN,738

which directly estimates MANO parameters with a CNN739

[48], but we modify its backbone to be the same as ours.740

Our results are more accurate and additionally with texture.741

4.5 Self-comparison742

In Section 4.5.1 and Section 4.5.2, we conduct extensive self-743

comparisons to verify the effectiveness of each component744

of our models S2HAND and S2HAND(V). In Section 4.5.3,745

we explore the effect of absorbing extra in-the-wild video746

sequences with S2HAND(V).747

4.5.1 Hand Reconstruction from Image Collections748

For self-supervised hand reconstruction from image collec-749

tion with S2HAND, we conduct ablation studies on Frei-750

HAND, since it is a widely used challenging dataset for751

hand pose and shape estimation from single RGB images.752

First, we give evaluation results on FreiHAND of set-753

tings with different components along with corresponding754

loss terms used in the network in Table 3. The baseline755

only uses the 3D branch with Eloc and Eregu, then we756

add Eori which helps the MPJPE and MPVPE decrease by757

19.5%. After adding the 2D branch with E2d and the 2D-3D758

TABLE 6: Comparison of self-supervised results and weakly-
supervised results. Refer to Section 4.5.1 for details.

Dataset Method AUCJ↑ AUCV↑ F5↑ F15↑

FreiHAND WSL 0.730 0.725 0.42 0.89
SSL 0.766 0.765 0.48 0.92

HO-3D WSL 0.765 0.769 0.44 0.93
SSL 0.773 0.777 0.45 0.93

consistency constrain Econs, the MPJPE and MPVPE further 759

reduce by 4%. The Ephoto slightly improves the pose and 760

shape estimation results. 761

Then, we make comparison of different 2D keypoint 762

sets. In our approach, there are three sets of 2D keypoints, 763

including detected keypoints Jde, estimated 2D keypoints 764

J2d, and output projected keypoints Jpro, where Jde is 765

used as supervision terms while J2d and Jpro are output 766

items. In our setting, we use multiple 2D representations 767

to boost the final 3D hand reconstruction, so we do not 768

advocate the novelty of 2D hand estimation, but compare 769

2D accuracy in the training set to demonstrate the effect 770

of learning from noisy supervision and the benefits of the 771

proposed 2D-3D consistency. Although we use OpenPose 772

outputs as the keypoint supervision source (see OpenPose 773

in Fig. 7), we get lower overall 2D MPJPE when we pre- 774

train the 2D and 3D branches separately (see Predicted w/o 775

2D-3D and Projected w/o 2D-3D in Fig. 7). After finetuning 776

these two branches with 2D-3D consistency, we find both 777

of them gain additional benefits. After the finetuning, the 778

2D branch (Predicted w/ 2D-3D) gains 5.4% reduction in 2D 779

MPJPE and the 3D branch (Projected w/ 2D-3D) gains 9.3% 780

reduction in 2D MPJPE. From the curves, we can see that 781

2D keypoint estimation (including OpenPose and our 2D 782

branch) gets higher accuracy in small distance thresholds 783

while the regression-based methods (Projected w/o 2D-3D) 784

get higher accuracy with larger distance threshold. From 785

the curves, the proposed 2D-3D consistency can improve 786

the 3D branch in all distance thresholds, which verifies the 787

rationality of our network design. 788

Last, we compare the weak-supervised (WSL) scheme 789

using ground truth annotations with our self-supervised 790

(SSL) approach to investigate the ability of our method 791

to handle noisy supervision sources. Both settings use the 792

same network structure and implementation, and WSL uses 793

the ground truth 2D keypoint annotations whose keypoint 794

confidences are set to be the same. 795

As shown in Table 6, our SSL approach has better perfor- 796

mance than WSL settings on both datasets. We think this is 797
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S2HAND 	S2HAND(V)
(w/ Temporal Loss)

S2HAND(V)
(w/ Smooth Loss)

S2HAND(V)
(w/ Quaternion Loss)

Fig. 8: Qualitative comparison of different motion-related constraints on the HO-3D testing set. Our S2HAND(V) with the
quaternion loss achieves the best qualitative results.

because the detection confidence information is embedded798

into the proposed loss functions, which helps the network799

discriminate different accuracy in the noisy samples. In800

addition, we find that the SSL method outperforms the WSL801

method in a smaller amplitude on HO-3D (by 1.0%) than802

that on FreiHAND (by 4.9%). We think this is because the803

HO-3D contains more occluded hands, resulting in poor804

2D detection results. Therefore, we conclude that noisy805

2D keypoints can supervise shape learning for the hand806

reconstruction task, while the quality of the unlabeled image807

also has a certain impact.808

4.5.2 Consistent Hand Reconstruction from Video Se-809

quences810

For consistent self-supervised hand reconstruction from811

video sequences with S2HAND(V), we conduct ablation812

studies on HO-3D since it is a widely used challenging813

dataset that presents hand-object interaction images with814

sequence information.815

We first study the accuracy performance of quaternion816

loss in comparison with other commonly used motion-817

related constraints modeling smoothness in sequence out-818

puts. The compared constraints include temporal loss from819

[36] closing neighboring poses as much as possible and820

smooth loss from [65] limiting neighboring pose variation821

with a threshold. Quantitative and qualitative results are822

presented in Table 4 and Fig. 8. Compared to S2HAND,823

S2HAND(V) with quaternion loss improves single frame824

prediction by reducing 3.5% in MPVPE, while S2HAND(V)825

with smooth loss from [36] only gets a reduction of less than826

1% in MPVPE and S2HAND(V) with temporal loss from827

[65] even degenerates the accuracy. We think this is because828

weak supervision is prone to optimize models in the wrong829

direction and suffers from being too sketchy and limited830

TABLE 7: Comparison of different configurations of the quater-
nion loss on the HO-3D testing set.

Config AUCJ↑ MPJPE↓ AUCV↑ MPVPE↓
interv=1, n=3 0.778 1.11 0.780 1.10
interv=3, n=3 0.780 1.10 0.782 1.09
interv=6, n=3 0.775 1.13 0.776 1.12
interv=3, n=6 0.774 1.13 0.777 1.12

under self-supervised settings. The temporal loss from [65] 831

is beneficial when the 3D annotation is available but may 832

collapse the model by making the network insensitive to 833

the high-frequency details in absence of strong supervision 834

signals. The smooth loss from [36] introduces threshold, but 835

in exchange enlarges the solution space and vanishes when 836

the threshold is exceeded. In contrast, quaternion loss nar- 837

rows the solution space based on hand structures and hand 838

motion dynamics and provides more significant supervision 839

signals, which proves its effectiveness over other similar 840

constraints in accuracy. 841

We next explore our quaternion loss with different con- 842

figurations in terms of the actual frame interval (interv) of 843

sampled frames and the number of frames (See n in Eq. 17). 844

The results are shown in Table 7. A medium interval value 845

(interv = 3 in Table 7) achieves the best performance. We 846

attribute this to two reasons. On one hand, large interval 847

may witness changes of the joint rotation axis in sampled 848

frames, which contradicts the fixed axis prior in quaternion 849

interpolation (See Section 3.3.1). On the other hand, small 850

interval only witnesses small rotation angles, which limits 851

the effect of quaternion loss. Also, interval is related to 852

the motion speed. In fact, a slow hand motion with larger 853

interval would be equivalent to a fast hand motion with 854

smaller interval. Though the quaternion loss is designed to 855

handle hand motion speed variation, an optimum interval 856

still exists based on the overall motion speed. For number 857

of frames n, increasing it causes model accuracy to drop. 858

We believe this is because optimizing multiple unconfident 859
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Fig. 9: Qualitative demonstration of the effectiveness of the T&S consistency loss. For each frame, we show output keypoints
(left), output 3D reconstruction (middle), and both sides of the output textures (with lighting) in flat hands (top-/bottom-right).
For each sequence, we show results without T&S loss on the top row and with T&S loss on the bottom row. T&S loss significantly
improves the output appearance consistency in sequence predictions.

SM1 AP13 AP10

Fig. 10: Boxplots of shape parameters in sequence predictions on the HO-3D testing set. SM1, AP13, and AP10 are sequences from
HO-3D testing set. T&S loss reduces S.D. across all 10 dimensions of the shape parameters.

predictions at the same time puts an extra burden on860

the gradient-descent-based optimizer and destabilizes the861

learning procedure. From above, we conclude that the best862

configuration of quaternion loss depends on the frame rates863

of input video sequences and the confidence of the output.864

Adjusting the configuration of quaternion loss dynamically865

according to the input and the output can be a promising866

direction for future work.867

We then compare smoothness performance of quater-868

nion loss with others by concatenating their single frame869

predictions to corresponding sequences predictions. The870

results are reported on both train set and test set in Table 5.871

Note that we only report ACC-ERR on train set since 3D872

ground truth is required to calculate ACC-ERR. As shown873

in Table 5, all smoothness related prior improve the smooth-874

ness of the sequence outputs, and our proposed quaternion875

loss achieves the best performance in all evaluation matri-876

ces. [65] comes second in terms of smoothness, but shows877

the worst performance on accuracy in Table 4. We think 878

better smoothness does not imply higher accuracy, where 879

a trade-off between smoothness and accuracy is shown 880

in some cases. Our quaternion loss differently does best 881

on both accuracy and smoothness, which again proves its 882

superiority over similar methods. In addition, we report 883

the average quaternion loss of the concatenated sequences 884

predictions. We find that our quaternion loss is highly 885

in line with ACC and ACC-ERR, which is encouraging 886

since they are calculated from completely different angles. 887

ACC-ERR and ACC regard no hand structure and hand 888

motion characteristic, rely solely on mechanics in terms of 889

acceleration, while quaternion loss does the opposite. Thus, 890

we think our proposed quaternion loss not only proves its 891

advantages over other loss functions in smoothness, but 892

is capable of being the metric measuring smoothness of 893

sequence predictions as well. 894

Finally, we inspect the effect of regularizing outputs of 895
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3.png

Fig. 11: Qualitative results of S2HAND(V) with extra in-the-wild data. The first three rows show results from HO-3D and the last
three rows show results from YT 3D.

TABLE 8: Results of absorbing extra in-the-wild data from YT 3D on the HO-3D testing set. * represents changing camera model
from perspective to the orthogonal model, which enables to learn with in-the-wild data without camera information.

Method AUCJ↑ MPJPE↓ AUCV↑ MPVPE↓ F5↑ F15↑
S2HAND 0.773 1.14 0.777 1.12 0.45 0.93
S2HAND* 0.770 1.15 0.774 1.13 0.45 0.93

S2HAND(V)* (w/ Quaternion Loss) 0.778 1.11 0.780 1.10 0.45 0.94
S2HAND(V)* (w/ Quaternion Loss) + YT 3D data 0.782 1.09 0.783 1.09 0.46 0.94

TABLE 9: Results of hand appearance consistency of our meth-
ods on the HO-3D testing set. Texture S.D. is computed using
lighted textures defined in Eq. 22.

Method Texture S.D. Shape S.D.
S2HAND 0.033 0.013

S2HAND(V) (w/ Quaternion Loss) 0.042 0.016
S2HAND(V) (w/ Quaternion Loss, T&S Loss) 0.016 0.012

hand shape and texture in sequence predictions with the896

T&S consistency loss. The results are presented in Table 4,897

Table 9, Fig. 9 and Fig. 10. Though the proposed T&S consis-898

tency loss does not further improve pose accuracy as shown899

in Table 4, it significantly improves the hand appearance900

consistency in sequence predictions. Quantitatively, with the901

T&S loss, the shape S.D. and texture S.D. drops 62% and902

25% respectively (see Table 9). Qualitatively, S2HAND(V)903

with the T&S loss gives more consistent reconstructions904

of different frames from the same sequence than without905

T&S as shown in Fig. 9. We also provide boxplots of906

shape parameters to show dimensional S.D. reduction in907

Fig. 10. Additionally, a visualization of per-face texture S.D.908

is provided in the supplementary material.909

4.5.3 Hand Reconstruction with Extra In-the-wild Data910

For hand reconstruction with extra in-the-wild data to911

fully exploit the advantage of our self-supervised method912

S2HAND(V), we use 34 train videos from YT 3D [40] and913

switch to orthogonal camera model with corresponding914

camera projection to enable learning with in-the-wild data915

without camera information.916

The results are presented in Table 8 and Fig. 11. Chang-917

ing the camera model makes the model performance drop a918

little, which may be caused by the ambiguity of camera focal 919

length. Then, imposing proposed quaternion loss boosts 920

the performance by 3.4%, which conforms to experiments 921

results in Section 4.5.2. Finally, adding extra in-the-wild data 922

further improves our model by 1.8%, resulting in 1.09cm in 923

MPVPE, which is the best result we can get on the HO- 924

3D test set. From above, we see that our proposed method 925

is able to utilize extra in-the-wild data without any camera 926

information and benefits from these training data. It is worth 927

noticing that there is a certain domain gap between HO- 928

3D and YT 3D since HO-3D regards hand-object interaction 929

scenario while YT 3D is mostly comprised of sign language 930

videos. However, the improvement on HO-3D has still been 931

witnessed, which we think proves the significance of utiliz- 932

ing in the data and the advantage of the proposed method. 933

5 CONCLUSION 934

In this work, we have proposed self-supervised 3D hand 935

reconstruction models S2HAND and S2HAND(V) which 936

can be trained from a collection of hand images and video 937

sequences without manual annotations, respectively. The 938

3D hand reconstruction network in both models encodes the 939

input image into a set of meaningful semantic parameters 940

that represent hand pose, shape, texture, illumination, and 941

the camera viewpoint. These parameters can be decoded 942

into a textured 3D hand mesh as well as a set of 3D joints, 943

and in turn, the 3D mesh and joints can be projected into the 944

2D image space, which enables our network to be end-to- 945

end learned. We further exploit the self-supervision signals 946
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embedded in hand motion videos by developing a novel947

quaternion loss and a texture and shape consistency loss948

to obtain more accurate and consistent hand reconstruction.949

Experimental results show that our models perform well950

under noisy supervision sources captured from 2D hand951

keypoint detection, and achieve comparable performance to952

the state-of-the-art fully-supervised method. Moreover, the953

experiments on in-the-wild video data show that our self-954

supervised model is effective to learn useful information955

from in-the-wild data to further improve its performance.956

For the future study, we think the texture and shape957

representation could be investigated deeply. Notice that we958

only estimate a per-face color and adopt a low-resolution959

hand model with 778 vertices. Besides, we rely on the shape960

and texture regularization terms to learn hand appearance961

from limited raw data under complex environments and po-962

tential hand-object interaction. These defects lead to the re-963

construction results having limited details. Recently, Corona964

et al. [91] utilize implicit representation to learn hand shape965

and texture of high quality. This points in a good direction966

for further exploration.967
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