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Zoom Transformer for Skeleton-based Group
Activity Recognition
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Abstract—Skeleton-based human action recognition has at-
tracted increasing attention and many methods have been
proposed to boost the performance. However, these methods
still confront three main limitations: 1) Focusing on single-
person action recognition while neglecting the group activity of
multiple people (more than 5 people). In practice, multi-person
group activity recognition via skeleton data is also a meaningful
problem. 2) Unable to mine high-level semantic information from
the skeleton data, such as interactions among multiple people and
their positional relationships. 3) Existing datasets used for multi-
person group activity recognition are all RGB videos involved,
which cannot be directly applied to skeleton-based group activity
analysis. To address these issues, we propose a novel Zoom
Transformer to exploit both the low-level single-person motion in-
formation and the high-level multi-person interaction information
in a uniform model structure with carefully designed Relation-
aware Maps. Besides, we estimate the multi-person skeletons
from the existing real-world video datasets i.e. Kinetics and
Volleyball-Activity, and release two new benchmarks to verify
the effectiveness of our Zoom Transfromer. Extensive experi-
ments demonstrate that our model can effectively cope with the
skeleton-based multi-person group activity. Additionally, experi-
ments on the large-scale NTU-RGB+D dataset validate that our
model also achieves remarkable performance for single-person
action recognition. The code and the skeleton data are publicly
available at https://github.com/Kebii/Zoom-Transformer.

Index Terms—Activity recognition, Skeleton-based action, Vi-
sual transformer, Attention mechanism.

I. INTRODUCTION

ACTION recognition is one of the fundamental problems
in the field of computer vision [1], [2], and has a wide

range of applications, e.g. human behavior analysis [3], intel-
ligent video surveillance [4], [5], human-machine interaction
[6], etc. However, as a common recording format of human
action, videos have the disadvantages of large data quantity,
high redundancy, and inefficient storage and transmission,
which limits the application of video-based action recogni-
tion. Except for video-based action recognition, recent studies
also pay great attention to skeleton-based action recognition
as its robustness against changes in camera viewpoints and
interference of cluttered backgrounds. The skeleton data is
also compact, thus it is suitable for long-term storage and fast
transmission. Accordingly, many advanced methods, which
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RGB video: 

• Large data quantity.

• High redundancy.

Running?

Skeleton data: 

• Less data quantity.

• Efficient storage and transmission.

Fighting!

Fig. 1. Group activity in the data forms of RGB and skeleton. The
independent action of each actor, the interactions of the actors and the
positional relationships among the actors, constitute the complex multi-person
group activity – fighting. Compared to the RGB data, the skeleton data is
lightweight and can be processed more efficiently. Therefore, how to take full
advantage of the skeleton data and explore multi-level relational information
for group activity recognition is desired to be investigated.

focus on skeleton-based action recognition, have been pro-
posed recently [7]–[12]. These methods can extract the spatio-
temporal motion information of the skeleton sequence, explore
the physical structure of the skeleton graph, and significantly
improve the accuracy of action classification. However, the
existing works still have the following disadvantages:

(1) The prior researches mainly focus on the skeleton
actions of one or two persons [13], but in real-world videos,
human activities are often composed of multiple persons.
In fact, each individual’s independent action, the positional
relationships among persons, and their interactions with each
other constitute a complicated group activity. Taking a fighting
incident from a surveillance video as an example (see Figure
1), in which some people are walking, some are running, and
some are pushing. Only if we observe and consider both the
multiple individual’s actions and their interactions in the video,
it can be recognized as the activity “fighting”. Due to the
lack of scene information in the skeleton data, it becomes
more difficult to recognize group activities from the skeleton
sequences.

Noticeably, identifying multi-person group activity is as
important as recognizing single-person action. E.g., for video
surveillance, if the system can discern groups of people
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fighting or being crowded and trampled, it will promptly notify
the security to deal with the public safety incident in reality ef-
ficiently. Group activity recognition, a very meaningful visual
task, is widely investigated in video-based action/event recog-
nition but is rarely explored in skeleton-based action/event
recognition. The long-sequence video, which is a primary type
of video data, is not suitable for intelligent analysis of group
activity because of the high computational complexity of the
video-based method. Therefore, the mainstream video-based
action recognition methods usually handle the video clips that
are generally short in length [14]–[16]. For the long-sequence
video clips, existing video-based methods usually only sample
8-64 frames from them. Furthermore, in practical applications,
it is also impossible to store the long-sequence video data
for a long time, since that requires a huge storage cost.
Recently, in some scenarios, there has been a trend to use the
skeleton data instead of the video data. For example, motion
capture in animation making or human-computer interaction,
the skeleton data estimated by the depth camera is more and
more widely used than the video data, due to the skeleton data
is more compressed and accurate to express human motion.
Consequently, how to take full advantage of the lightweight
and robust skeleton data is prospective for group activity
recognition (see Figure 1).

(2) The existing skeleton-based action recognition methods
lack an effective feature extraction model to learn the char-
acteristic of multi-person group activity [17]. For example,
they simply utilize a global-pooling layer to fuse the motion
features of multiple persons. However, this strategy ignores
the rich interaction information and positional relation among
people. Taking a volleyball game video as an example. In this
scenario, each individual may perform different actions. Some
are running, some are walking, some are waving, and some
are spiking. But their actions together form the activity of
playing volleyball. Therefore, how to enable the model has
the ability to extract a single person’s action feature, as well
as to exploit both the interactions and positional relationships
among multiple persons, is a core issue for skeleton-based
activity recognition.

(3) The current datasets, which were constructed for
skeleton-based action recognition, contain two persons at most
[8], [13], [15], [18], thus they are unsuitable for group activity
recognition. Furthermore, the existing datasets, which are used
for multi-person group activity recognition, only involve RGB
videos [19], [20], thus they cannot be directly applied to
analyze the skeleton-based group activity. Consequently, it is
necessary to extract the skeleton data from real-world videos to
promote the research and application of skeleton-based multi-
person group activity analysis.

To address the above issues, we propose a novel
Transformer-based model named Zoom Transformer, and
design two skeleton-based group activity benchmarks (i.e.
Kinetics-Skeleton-Activity (K-SA) and Volleyball-Skeleton-
Activity (V-SA)) derived from the existing video-based
datasets, for skeleton-based multi-person group activity recog-
nition. Our Zoom Transformer, which consists of two parts, is
valid to extract multi-level features of the skeleton sequence
hierarchically. Specifically, the Zoom-in Transformer (ZiT)

part, which takes the joint features of a single person as input
to construct a graph of human body joints, uses the Multi-head
Relation-aware Attention and the Multi-scale Temporal Con-
volution to learn the motion features of a single person in the
spatial and temporal dimensions, respectively. The Zoom-out
Transformer (ZoT) part, takes the features of multiple persons
extracted by ZiT as input and builds a graph of the human
group with the help of the powerful relation mining ability
of the Relation-aware Attention to capture the spatio-temporal
interaction information among multiple persons. Additionally,
we carefully design a Relation-aware Attention mechanism,
which comprehensively leverages the prior knowledge of the
human body structure and the global characteristic of the
human motion to fully exploit the multi-level features of group
activities.

Our skeleton-based group activity benchmarks i.e. K-SA
and V-SA aim to verify the effectiveness of the proposed
Zoom Transformer model and promote future studies. For K-
SA, we select 14 common group activities from the large-
scale video-based human action dataset i.e. Kinetics [19] and
employ the AlphaPose [21] to extract the skeleton data of
at most 5 persons from the corresponding videos. For V-SA,
we estimate the skeleton data of at most 12 persons from
the popular video-based group activity dataset i.e. Volleyball
Activity [20]. Apparently, the skeleton data of our K-SA and
V-SA are both derived from real-world videos. Due to the
limitation of the raw data quality and the ability of AlphaPose,
K-SA and V-SA contain many noises, which makes group
activity recognition more challenging and conformable to the
real scenarios. Section Experiments describes how to acquire
the group skeleton data in detail.

In summary, the main contributions of this work are three-
fold:

• We extend the skeleton-based action recognition for
single-person action to multi-person group activity, which
has a wide range of applications in practice. We hope
this work can attract more attention and promote the
investigation of skeleton-based group activity recognition.

• A Zoom Transformer with Relation-aware Attention,
which consists of a Zoom-in Transformer and a Zoom-
out Transformer, is explored to extract the low-level
motion information of a single person and the high-
level interaction information of multiple persons from the
skeleton sequence hierarchically.

• Two new skeleton-based group activity benchmarks (i.e.
K-SA and V-SA) are designed and released publicly
based on the existing real-world RGB video datasets,
which can verify the effectiveness of our proposed model
and facilitate the future study.

II. RELATED WORK

A. Skeleton-based Action Recognition

Most of the conventional studies in skeleton-based action
recognition relied on handcrafted features [22], [23], which
cannot effectively extract the spatio-temporal correlation from
the skeleton sequences. Thus, they have limited accuracy and
weak robustness for sophisticated human actions. Recently,
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deep learning based action recognition methods, e.g. RNN-
based methods [11], [24]–[26] and CNN-based methods [27]–
[31] focusing on the temporal information and spatial informa-
tion of the skeleton sequence respectively, have achieved rapid
progress. Yan et al. [8] firstly proposed a GCN-based method
ST-GCN, which boosts the performance of the skeleton-based
action recognition for the ST-GCN can explore the spatio-
temporal features simultaneously and uniformly. Based on
ST-GCN, many variants have been explored, which typically
introduce some incremental modules, e.g. the attention module
[32], the context-aware module [10], the semantics-guided
module [33], and the class activation maps [34] to enhance
the network capacity. Liu et al. [35] introduced a multi-scale
3D GCN that can disentangle and unify the dense cross-
spacetime information. Cheng et al. [36] introduced a graph-
based shift operation to provide flexible receptive fields and
used the point-wise convolutions to lighten the computational
complexity. Zhang et al. [7] explored a spatial attentive and
temporal dilated GCN to extract the features of skeleton
sequences with different spatial attention weights and temporal
scales. Tu et al. [37] fused the motion features of the joints
and the bones and designed a temporal prediction head for
self-supervised skeleton feature mining. Furthermore, Chiara
et al. [38] presented to use the Transformer to explore the
spatio-temporal correlation of the skeleton graph sequences.
These methods are effective to capture the motion information
of a single person but without concerning the group activity
of multiple persons. Usually, a multi-person group activity
contains more expressive motion clues, such as the interactions
and the relative spatial positions, which need to be deeply
exploited. In contrast to the above methods, the proposed
Zoom Transformer with Relation-aware Attention can extract
both the low-level motion information of an individual and
the high-level interactions of multiple people hierarchically,
which opens an effective way to analyze skeleton-based group
activities.

B. Group Activity Recognition

Group activity recognition has been extensively studied
based on the RGB videos. The popular datasets for group
activity recognition also only involve RGB videos, e.g. Vol-
leyball Activity [20] and Collective Activity [39]. The ear-
lier approaches mostly combined hand-crafted visual features
with probability graphical models [40]–[42] to represent the
motion features of multiple people. Recent deep model based
researches usually use CNN to extract low-level video features,
and utilize GCN or attention mechanism to exploit the high-
level semantic relationship among actors [43], [44]. Ibrahim
et al. [20] designed a two-stage deep temporal model, which
builds an LSTM model to represent the action dynamics of
individual people and uses another LSTM model to aggregate
person-level information. Wu et al. [45] proposed to construct
an Actor Relation Graph (ARG) to simultaneously capture
the appearance and position relation between actors. Azar
et al. [46] presented a Convolutional Relational Machine
(CRM) to represent the spatial relations between individuals in
the video. In general, video-based group activity recognition

focuses on extracting the motion information of a single
person and the interaction information among multiple people.
Similarly, these two kinds of information are also the core
clues for skeleton-based group activity recognition. Without
the RGB-based scene appearance information, skeleton-based
multi-level feature extraction is more challenging. Therefore,
we present the ZiT and the ZoT with a Transformer-based
structure and specifically designed Relation-aware Attention
to fully explore the motion information and the interaction
information of the skeleton sequence respectively.

C. Visual Transformer

Transformers [47], which have been widely used in the
natural language processing task, are the models that rely
on the multi-head self-attention mechanism to draw global
correlations from the input features. Transformers have robust
feature extraction ability and global feature perception field,
so it is effective in various tasks. Recently, using Transformer
in vision tasks becomes the trend, e.g. object detection [48],
image enhancement [49], image segmentation [50], video
processing [51], and 3D point cloud processing [52]. For
image classification, Dosovitskiy et al.proposed a Vision
Transformer (ViT) [53], which divides an image into 16×16
patches and feeds these patches into a standard Transformer,
obtains remarkable performance. Wu et al.represented images
as semantic visual tokens and ran Transformer to densely
model token relationships [54]. For object detection, Carion
et al. [55] combined the transformer framework with the
CNN network and proposed a simple and fully end-to-end
object detector named DEtection TRansformer (DETR). These
works demonstrated that Transformer has a strong capability
to extract low-level visual features and high-level correla-
tive features. However, in the field of skeleton-based action
recognition, there are few studies discuss the applicability
of the Transformer in learning multi-level features. In this
work, we designed a Zoom Transformer with Relation-aware
Attention to extract multi-level spatio-temporal features from
the skeletons of group people.

III. METHOD

In this section, we first elaborate the two important parts
of our Zoom Transformer model i.e. Zoom-in Transformer
(ZiT) and Zoom-out Transformer (ZoT) mathematically. Then,
we define the Relation-aware Maps in the proposed Relation-
aware Attention for ZiT and ZoT respectively. Finally, we
introduce the structure of the Zoom Transformer model.

A. Zoom-in Transformer

The role of the ZiT is to capture the motion information
of every single human body in group activities. Just like a
zoom camera, ZiT focuses on each human body with a joint-
level perception field and extracts the motion information of
every single human body by exploring the spatial-temporal
correlation among the joints. The detailed structure of a ZiT
block can be referred to in the left part of Figure 2. The core
components of the ZiT block are the Multi-head Relation-
aware Attention and the Multi-scale Temporal Convolution

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3193574

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on September 30,2022 at 02:10:32 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

S
k

el
et

o
n

F
ea

tu
re

s

N
o

rm

M
u

lt
i-

h
ea

d

R
el

at
io

n
-a

w
ar

e 

A
tt

en
ti

o
n

+ +

M
L

P

M
S

-T
C +

Zoom-in (-out) Transformer Block

F
C

Q
K

V

Q
∙
K
𝑇

R-A Map

F
C

D
ro

p
o
u

t

Relation-aware Attention

+

1×1 Conv

7×1 Conv

1×1 Conv

3×1 Conv

1×1 Conv

Concat

Multi-scale Temporal Convolution

or

𝑀𝑍𝑖𝑇 𝑀𝑍𝑜𝑇

Fig. 2. The structure of a Zoom-in (-out) Transformer (ZiT/ZoT) block of the proposed Zoom Transformer model, which is suitable for extracting multi-level
skeleton activity features. The core components of the ZiT/ZoT block are the Multi-head Relation-aware Attention and the Multi-scale Temporal Convolution
(MS-TC), which can be effective to process spatial information and temporal information, respectively. The ZiT block and the ZoT block have different
Relation-aware Maps. “R-A Map” denotes a Relation-aware Map. “Norm” denotes a normalization layer. “MLP” represents a Multi-layer Perceptron, which
contains two fully connected layers and a dropout layer. The residual connections are also utilized in the ZiT/ZoT block. Note that the structures of the R-A
Map in the ZiT block and in the ZoT block are different, which will be described in Secition III.C. Relation-aware Map.

(MS-TC), which can be effective to process spatial and tem-
poral information, respectively. Let X ∈ RC×T×N×M be
the N joint features across T frames of M persons, where
C is the channel dimension. The initial value of C is 3,
which represents the x-coordinate, the y-coordinate, and the
confidence score of the joints.

The Multi-head Relation-aware Attention operates on the N
joints, which can be described as mapping a query joint and a
set of key-value joint pairs to an output, where the query (Q),
key (K), value (V ), and output are all feature vectors of the
joints. The output is computed as a weighted sum of V , where
the weight assigned to each V is computed by a correlation
function Q with the corresponding K and the Relation-aware
Map MR. The Relation-aware Attention mechanism can be
referred to in the right-top part of Figure 2. In practice, it is
defined as:

AttentionR(Q,K, V,MR) =
1

2
(softmax(

QKT

√
dk

) +MR)V,

(1)
where dk is the dimension of K.

Integrating multiple Relation-aware Attention heads, the
Multi-head Relation-aware Attention mechanism can be for-
mulated as:

Multihead(Q,K, V,MR) = Concat(head1, ..., headh)W
O,
(2)

where headi = AttentionR(QW
Q
i ,KW

K
i , V WV

i ,MR). The
projections are the parameter matrices WQ

i ∈ Rd×dk , WK
i ∈

Rd×dk , WV
i ∈ Rd×dv and WO ∈ Rhdv×d. Multi-head

Relation-aware Attention allows the model to jointly attend
to the information from different motion representation sub-

spaces and learn various features of the skeleton sequence.
Using ZiT, we can capture the motion information of indepen-
dent individuals, which is the basis for our method to further
analyze the group activities.

The MS-TC operates on T frames with multi-scale temporal
kernels. In our Zoom-in Transformer block, we use three
branches with 1, 3, 7 kernel sizes respectively. Each branch
contains a 1×1 convolution to reduce the channel dimension.
The results of the three branches are concatenated to obtain
the output. The MS-TC can be referred to in the right-bottom
part of Figure 2.

B. Zoom-out Transformer
The role of the ZoT is to exploit the interactions and posi-

tional relationships among multiple persons in group activities.
If the ZiT is approximate to the macro mode of the Zoom
Transformer, the ZoT can be considered as a panorama mode.
ZoT focuses on the holistic scene with a group-level perception
field. Thanks to the powerful feature mining capability of the
Transformer, our ZoT block has the same structure as ZiT
block with a different Relation-aware Map (see Figure 2),
which is suitable for extracting the low-level motion feature of
the human body joints and is also effective to learn high-level
relation feature of multiple people. Let X

′ ∈ RC×T×N×M

denotes the output joint feature of ZiT. We use a Global Aver-
age Pooling (GAP) layer to squeeze the joint dimension, then
we can get the feature Y ∈ RC×T×M of M persons, which
is the input feature of ZoT. The Relation-aware Attention of
the ZoT that operates on the M actors enables to capture the
information of interactions and positional relationships among
them quite well.
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Fig. 3. The flow chart of our Zoom Transformer model, which consists of two parts – “ZiT” and “ZoT”. “ZiT” in the zoom-in process can extract joint-level
information, “ZoT” in the zoom-out process can exploit group-level information. ZiT and ZoT have the same structure with different Relation-aware Maps.

C. Relation-aware Map
The physical structure of the human body is an impor-

tant clue for the extraction of the skeleton motion features.
GCN-based models have achieved remarkable performance
in skeleton-based action recognition because the adjacency
matrix of GCNs can fully leverage the prior knowledge of
body structure [7]. Inspired by this, we define a Relation-aware
Map for the ZiT block, which enables the ZiT block to have
the same ability as GCNs to use the prior knowledge of the
skeleton graph for learning low-level features. We consider the
Relation-aware Map for ZiT block as MZiT ∈ {0, 1}N×N ,
where MZiT

i,j = 1 if the i-th and the j-th joints are physical
connected, and MZiT

i,j = 0 otherwise. In the Relation-aware
Attention, we make the MZiT normalized, accordingly, the
MR in ZiT block can be expressed as follows:

MR = D− 1
2MZiTD− 1

2 , (3)

where D ∈ RN×N is the diagonal degree matrix of MZiT .
To make this prior Relation-aware Map more robust, we set
the Relation-aware Maps of the last 5 ZiT blocks in our
Zoom Transformer as the trainable parameters, which can be
optimized during the training process.

For the Relation-aware Map in the ZoT block, unlike
the ZiT which has an explicit physical graph structure, we
use the feature output by ZiT to obtain an implicit head-
specific Relation-aware Map that contains the global relation
information. The MZoT ∈ RC×M×M is formulated as:

MZoT = softmax(ψ(Y
′
)− ϕ(Y

′′
)), (4)

where Y
′ ∈ RC×T×1×M and Y

′′ ∈ RC×T×M×1 denotes the
output features of ZiT with different tensor shape. ψ(·) and
ϕ(·) are the convolutional layers with 1×1 kernel. In general,
the MR in ZoT block can be expressed as follows:

MR =MZoT . (5)

It should be noticed that the channel mapping of the con-
volutional layers ψ(·) and ϕ(·) is C → h, which makes

the Relation-aware Map in the ZoT block involve expressive
global relation information for different attention heads.

D. Model Architecture

The flow chart of the deigned Zoom Transformer model
is shown in Figure 3. As a baseline model of skeleton-based
group activity recognition, our Zoom Transformer model is
lightweight and effective, where we don’t add any tricks
and incremental modules to it. The input skeleton data is
X ∈ R3×T×N×M . In our Zoom Transformer, the ZiT has
7 blocks and each block has 6 attention heads. In the training
process, we freeze the Relation-aware Maps of the first 2 ZiT
blocks while setting the Relation-aware Maps of the last 5
ZiT blocks as the trainable parameters. In the zoom-in stage,
we use the ZiT to parallelly process the skeleton data of M
individual persons on the joint dimension N and the temporal
dimension T . Therefore, for each person, the ZiT shares the
weights. After the ZiT and the GAP layer, we can get the
feature Y ∈ RC×T×M of M persons, which is then used
as the input of the ZoT. The ZoT has 2 blocks and each
block also has 6 attention heads. In the zoom-out stage, the
ZoT operates on the personal dimension M and the temporal
dimension T . Finally, the output features of the ZoT are
processed by a GAP layer and a Softmax classifier (FC +
Softmax) to get the prediction score of the group activity. After
the Zoom Transformer is processed, the channel dimension of
the skeleton data is expanded from 2 to 276, so the final FC
(i.e. Fully Connected) layer has 276 input channels and K
output channels, where K is the total number of the activity
categories.

IV. EXPERIMENTS

A. Datasets

To test our skeleton-based multi-person group activity
recognition method, we construct two new benchmarks i.e.
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Fig. 4. The number of samples in each category of the training set (left) and the testing set (right) on the K-SA benchmark, which is derived from the
Kinetics dataset.

Fig. 5. The number of samples in each category of the training set (left) and the testing set (right) on the V-SA benchmark, which is derived from the
Volleyball Activity dataset.

the Kinetics-Skeleton-Activity (K-SA) and the Volleyball-
Skeleton-Activity (V-SA) based on the existing RGB video
datasets Kinetics [19] and Volleyball Activity [20], respec-
tively. Compared with the video data, the video-derived
skeleton-based data we formed greatly reduce the data quan-
tity. Take the Volleyball Activity dataset as an example. The
original videos are about 59GB, but the corresponding skeleton
data is only 473MB. The data size has been reduced by more
than 120 times. Additionally, we also test the effectiveness
of our model on the popular datasets NTU-RGB+D 60 [13]
and NTU-RGB+D 120 [18] for single-person skeleton action
recognition.

Kinetics-Skeleton-Activity (K-SA): Kinetics [19] consists
of 300,000 video clips in 400 action classes. The video clips
of Kinetics are sourced from YouTube and most of them are
single-person actions. The action classes range from daily
activities, sports scenes, to complex actions with interactions.
In this work, we look at skeleton-based group activity recog-
nition. Accordingly, based on the video content, we select
16,151 videos from Kinetics and divide them into 14 activity
categories, including playing basketball, dancing, skiing, play-
ing football, boating, marching, windsurfing, playing poker,
playing ice hockey, surfing crowd, busking, fighting, playing
volleyball and celebrating, to construct the K-SA benchmark.
To obtain the joint locations, we first resize all videos to
the resolution of 340 × 256 and convert the frame rate to
30 FPS. Then we use the public available AlphaPose [21] to
estimate the location of 18 joints of each people on each frame.

AlphaPose is a popular and advanced human pose estimation
tool, which is widely used to extract human skeleton [56]–
[58]. The 18 joints include 17 joints marked by the COCO
dataset [59] and an additional “Neck” joint, which is the mean
value of the left and right shoulders. The AlphaPose gives
the 2D coordinates (X,Y ) of the human body joints and the
confidence scores C for the 18 joints. We represent each joint
with a tuple (X,Y,C), and one person is recorded as an array
of 18 tuples. For videos with more than 5 persons, we select
5 persons with the highest average joint confidence in each
frame. In this way, one video with T frames is transformed
into a skeleton sequence of multi-person. We represent the
multi-person skeleton sequence with a tensor of (3, T, 18, 5)
dimensions. For simplicity, we pad every sequence by repeat-
ing the sequence from the start to ensure it contains T = 300
frames. We separate the selected 16,151 skeleton sequences
into a training set that has 15,117 sequences and a testing set
that has 1034 sequences associated with the Kinetics dataset.
The number of samples in each category of the training set and
the testing set can be seen in Figure 4. The top two rows of
Figure 6 show two samples of the K-SA benchmark. We find
that each individual can perform the same action or different
actions in a group activity. The interaction among them is
particularly important for recognizing group activities.

Volleyball-Skeleton-Activity (V-SA): The Volleyball Ac-
tivity dataset [20] is composed of 4,830 video clips gathered
from 55 volleyball games, with 3,493 training clips and 1,337
testing clips. Each clip is labeled with one of 8 group activity
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Fig. 6. Visualization of some samples of our released K-SA benchmark and V-SA benchmark. The K-SA benchmark is drawn in blue and the V-SA benchmark
is drawn in green.

labels (right set, right spike, right pass, right winpoint, left set,
left spike, left pass and left winpoint). Similar to the K-SA
benchmark, we use the AlphaPose to estimate the 18 joints
of each person on every frame of the clips. We select 12
persons with the highest average joint confidence in each frame
and construct the skeleton sequence tensors with (3, T, 18, 12)
dimensions. Each video clip in the Volleyball Activity dataset
contains 41 frames, thus we set T = 41. The number of
samples in each category of the training set and the testing set
can be seen in Figure 5. The bottom two rows of Figure 6 show
two samples on the V-SA benchmark. Compared with the K-
SA benchmark, the V-SA benchmark contains more persons
in each sequence, and the relationship among them is more
complicated.

NTU-RGB+D 60: NTU-RGB+D 60 [13] is a large in-door-
captured dataset with annotated 3D joint coordinates for the
human action recognition task. NTU-RGB+D contains 56,000
skeleton sequences in 60 action classes. There are 25 joints for
each person in the skeleton sequences, while each sequence
has no more than 2 persons. It includes two settings: (1) Cross-
Subject (X-S) benchmark, in which the training set comes
from one subset of 20 subjects and a model is validated on
sequences from the remaining 19 subjects; (2) Cross-View
(X-V) benchmark, in which the training samples come from
camera views 2 and 3, and the evaluation samples are all from
the camera view 1. We follow the conventional setting of [13]
and report the top-1 accuracy on both sub-sets.

NTU-RGB+D 120: NTU-RGB+D 120 [18] is an exten-
sion of NTU-RGB+D 60, which adds 57,367 new skeleton

sequences representing 60 new actions, for a total of 113,945
videos referring to 120 classes from 106 subjects under 32
camera setups. It includes two settings: (1) cross-subject (X-
Sub) benchmark: the 106 subjects are split into training and
testing groups. Each group contains 53 subjects. (2) cross-
setup (X-Set) benchmark: the training data comes from sam-
ples with even setup IDs, and the testing data comes from
samples with odd setup IDs.

B. Implementation Details

We implement our Zoom Transformer model based on the
PyTorch deep learning framework [60]. The Zoom Trans-
former has a total of 9 blocks (7 ZiT blocks + 2 ZoT blocks),
and the channel dimensions are respectively 48, 48, 48, 96,
96, 192, 192, 276 and 276 for each block (see Figure 7,
ZiT+ZoT). We apply the stochastic gradient descent (SGD)
algorithm with Nesterov momentum (0.9) as the optimizer.
The weight decay is set to 0.0005. We use 4 GTX 2080Ti
GPUs for model training, and set the batch size to 64 and the
weighting factor to λ = 0.1. The initial learning rate is set as
0.05. For the K-SA benchmark, the number of training epochs
is set as 50. The learning rate decay is set as 0.1 at the 20th
epoch, 30th epoch, and 40th epoch. For the V-SA benchmark,
the number of training epochs is set as 40. The learning rate
decay is set as 0.1 at the 20th epoch and 30th epoch. For the
NTU-RGB+D 60 and the NTU-RGB+D 120, the number of
training epochs is set as 60. The learning rate decay is set as
0.1 at the 30th epoch, 40th epoch, and 50th epoch.
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Fig. 7. The detailed structures of the ZiT+ZoT, the ZiT Only, and the ZoT
Only. (3, 48) means the input channel of this block is 3, and the output channel
of this block is 48. N is the number of the joints. The dotted line indicates
the block without Relation-aware Map.

TABLE I
COMPARISON OF THE PARAMETERS AND ACCURACY ON THE K-SA
BENCHMARK WITH DIFFERENT MODEL CONFIGURATIONS. * MEANS

WITHOUT THE REALTION-AWARE MAP.

Model configs Params Top-1 (%) Top-5 (%)
ST-GCN [8] 3.10M 64.60 94.10
AGCN [17] 3.44M 67.89 95.74

MS-G3D [35] 3.19M 68.08 96.03
S-TR [38] 3.07M 67.24 94.98
ZiT Only 2.93M 62.86 93.91

ZiT Only* 2.93M 62.37 93.42
ZoT Only 2.99M 67.41 94.58

ZoT Only* 2.71M 67.11 94.19
ZiT + ZoT* 2.71M 69.06 96.04
ZiT + ZoT 2.93M 69.83 96.13

C. Ablation Studies

We present an ablative study on the K-SA benchmark
and the V-SA benchmark to evaluate the effectiveness of
the proposed model. We analyze the effect of the ZiT, the
ZoT, the Relation-aware Map, the temporal kernel size, and
the number of attention heads. We also visualize the average
Attention Maps in the ZiT and the ZoT to visually analyze
the interpretability of the proposed Zoom Transformer model.

Model configurations. Experiments are conducted to test
the performance of different model configurations. We take
the popular GCN-based methods ST-GCN [8], AGCN [17],
MS-G3D [35] and the Transformer-based method S-TR [38]
as the baselines. Results on the K-SA benchmark and the V-
SA benchmark are shown in Table I and Table II, respectively.
“ZiT Only” means we only use the ZiT part and apply a GAP
layer at the end of the model to pool the features of multi-
person. “ZoT Only” means we only use the ZoT part and flat-
ten the joint dimension N to the channel dimension C of the
initial skeleton feature. The detailed structure of the ZiT Only

TABLE II
COMPARISON OF THE TOP-1 AND TOP-5 ACCURACY ON THE V-SA

BENCHMARK WITH DIFFERENT MODEL CONFIGURATIONS. * MEANS
WITHOUT THE REALTION-AWARE MAP.

Model configs Top-1 (%) Top-5 (%)
ST-GCN [8] 64.92 97.08
AGCN [17] 66.41 98.07

MS-G3D [35] 66.49 98.35
S-TR [38] 65.37 97.46
ZiT Only 70.23 98.74
ZiT Only* 70.00 98.42
ZoT Only 69.04 98.59
ZoT Only* 68.81 98.42
ZiT + ZoT* 70.75 99.05
ZiT + ZoT 71.20 99.18

TABLE III
COMPARISON OF THE INPUT SEQUENCE LENGTH (FRAMES), GFLOPS

AND TRAINING DATA SIZE AND WITH THE VIDEO-BASED METHODS. THE
RESULTS OUTSIDE THE BRACKETS IS ON THE VOLLEYBALL ACTIVITY

DATASET, AND THE RESULTS INSIDE THE BRACKETS IS ON THE KINETICS
DATASET.

Methods Seq len GFLOPs Data size
I3D [15] 8 (8) 108.0 (108.0) 43G (≈100G)

SlowFast [16] 8 (8) 65.7 (65.7) 43G (≈100G)
Zoom Transformer 41 (150) 1.6 (5.6) 0.34G (4.8G)

and the ZoT Only can be seen in Fighre 7. Both the ZiT Only
and the ZoT Only have 9 blocks, which are consistent with the
Zoom Transformer. To balance the number of parameters, we
only apply the Relation-aware Map in the last three blocks of
the ZoT Only model. Table I shows the results on the K-SA
benchmark, the performance of ZiT Only and ZoT Only is
worse than AGCN and MS-G3D. But the ZiT + ZoT (i.e. the
Zoom Transformer) outperforms AGCN by 1.94% (69.83% vs
67.89%) on the top-1 accuracy with less parameters (2.93M
vs 3.44M) and outperforms MS-G3D by 1.75% (69.83% vs
68.08%) on the top-1 accuracy with less parameters (2.93M
vs 3.19M). Table II shows the results on the V-SA benchmark,
the performance of the three model configurations exceeds the
baselines. ZiT + ZoT (the Zoom Transformer) performs better
than ZiT Only and ZoT Only, where it surpasses AGCN by
4.79% (71.20% vs 66.41%), MS-G3D by 4.71% (71.20% vs
66.49%), and S-TR by 5.83% (71.20% vs 65.37%) on the top-
1 accuracy. These results demonstrate that for skeleton-based
group activity recognition, it is insufficient to extract only the
low-level human joint motion information or only the high-
level multi-person relation information. Only by fully mining
the low-level information and the high-level information, and
effectively integrating them can get remarkable performance.
Besides, these results also prove that our Zoom Transformer
model is more suitable than the existing methods to capture
multi-level features hierarchically for skeleton-based group
activity recognition.

Relation-aware Map. For the Relation-aware Map in the
ZiT and ZoT, it can bring a suitable accuracy improvement
on both the K-SA and V-SA benchmarks. As can be seen
in Table I and Table II, the ZiT with Relation-aware Map
obtains 0.49% and 0.23% improvements of top-1 accuracy on
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Fig. 8. The confusion matrices on our presented benchmarks K-SA (left) and V-SA (right).

TABLE IV
COMPARISON OF THE TOP-1 AND TOP-5 ACCURACY ON THE K-SA

BENCHMARK WITH DIFFERENT NUMBER OF ATTENTION HEADS.

Attention heads Top-1 (%) Top-5 (%)
ZiT3 + ZoT3 66.25 95.74
ZiT3 + ZoT6 66.92 94.97
ZiT6 + ZoT3 67.50 95.36
ZiT6 + ZoT6 69.83 96.13
ZiT9 + ZoT9 68.38 96.03

the K-SA and V-SA with almost no increase in the number of
parameters, respectively. The ZoT with Relation-aware Map
obtains 0.30% and 0.23% improvements of top-1 accuracy on
the K-SA and V-SA, respectively. The Relation-aware Map
also brings 0.77% and 0.45% top-1 accuracy improvements
for the ZiT+ZoT on the benchmarks K-SA and V-SA, respec-
tively. These results show that the Multi-head Attention with
the Relation-aware Map can fully leverage the prior knowledge
of the human body structure to extract motion features of
individuals, and can effectively utilize global information of
all actors to learn the multi-person interaction features.

Strength of the skeleton-based methods. Currently, on
the video-based dataset, the activity recognition accuracy via
utilizing the skeleton data (the skeleton data is directly esti-
mated from videos), is lower than that by using RGB videos,
where the accuracy gap is about 20% [8], [15]. The main
reason is that a large amount of noise is generated during the
process of extracting the skeleton data from RGB videos by
pose estimation algorithms. Furthermore, the pose estimation
precision is limited.

On the other hand, skeleton-based activity recognition has
significant advantages over video-based activity recognition on
other aspects. Table III shows the comparison of the input

TABLE V
COMPARISON OF THE TOP-1 AND TOP-5 ACCURACY ON THE K-SA

BENCHMARK WITH DIFFERENT TEMPORAL KERNEL SIZES.

Kernel size Top-1 (%) Top-5 (%)
3 68.18 95.74
5 67.21 95.94
7 65.96 95.36

3 + 3 + 3 69.34 95.65
1 + 3 + 5 69.43 95.76
1 + 3 + 7 69.83 96.13

sequence length, GFLOPs, and training data size between
the mainstream video-based methods and our skeleton-based
Zoom Transformer model. It can be seen that our skeleton-
based model requires fewer training data, can handle longer
sequences, and the GFLOPs is much smaller than that of the
video-based models (I3D [15]: 108.0 vs Ours: 1.6). Therefore,
it is of great significance to explore group activity recognition
based on the skeleton data. In fact, under the condition of
accurate skeleton data estimated by the depth camera, the
accuracy of skeleton-based action recognition will be superior
to that of video-based action recognition [18].

Number of the attention heads. The number of attention
heads affects the feature extraction ability of the Transformer
critically. Table IV shows the comparison of the accuracies
on the K-SA benchmark with different number of attention
heads. The experimental results reveal that when both ZiT
and ZoT have 6 attention heads, the performance becomes
the best. When the number of the attention heads is 9 or
3, the performance of the model decreases. The reason for
this phenomenon is that when the number of the feature
channels is confirmed, increasing the number of attention
heads appropriately can improve the ability of the attention
mechanism to extract diverse features. However, too many
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Fig. 9. Visualization of the average Attention Map in Zit and ZoT for different human action classes on the K-SA benchmark. The brighter area indicates
that the weight of the Attention Map is larger there, where a key motion area for recognizing group activity.

TABLE VI
COMPARISON OF THE TOP-1 AND TOP-5 ACCURACY ON THE V-SA

BENCHMARK WITH DIFFERENT NUMBERS OF PERSONS.

Persons Top-1 (%) Top-5 (%)
2 46.03 92.58
6 61.25 97.33
12 71.20 99.18

attention heads will lead to too few channels of a single
attention head, which will reduce the informativeness of the
features [47].

Temporal kernel size. To understand the function of the
temporal kernel size of the MS-TC module in the Zoom-in
(-out) Transformer block, some experiments are conducted
in Table V. The first three rows show the results of the
Zoom Transformer with a single temporal kernel and the last
three rows show the results of the Zoom Transformer with
a multi-scale temporal kernel. The results demonstrate that
the multi-scale temporal kernel can significantly improve the
accuracy. When the 3 branches of the temporal convolution
have different kernel sizes, the performance becomes better,
and the MS-TC with “1 + 3 + 7” kernel size obtains the
best accuracy. Thus, multi-scale temporal information is very
important for skeleton-based activity recognition.

Accuracy of each activity category. Figure 8 displays the
confusion matrices of our model on the presented benchmarks
K-SA (left) and V-SA (right). The results reveal that the main
difficulty for the skeleton-based group activity recognition is to
distinguish the confusing group actions (e.g. “celebrating” and
“surfing crowd” in K-SA (left)), and to discern the individual’s
spatial position relationship of a group action (e.g. “left spike”
and “right spike” in V-SA (right)). Which demonstrated our
initial motivation that “exploring the interactions and posi-
tional relation among multiple people is a core issue”.

Qualitative analysis of the Attention Map. Figure 9 shows
the visualized average Attention Map in ZiT and ZoT for

the activity “playing volleyball” and “dancing” in the K-SA
benchmark. The average Attention Map is the mean value
of the multi-head multi-block Relation-aware Attention Maps.
The brighter area indicates that the weight of the Attention
Map is larger there, where a key motion area for recognizing
group activity. We can clearly see that for different activities,
the Attention Map of ZiT can learn the obvious movement
parts of the human body, and the Attention Map of ZoT can
focus on the important actors in group activities. Taking the
activity “playing volleyball” as an example. For the main
actor’s Attention Map of ZiT (right part of Figure 9), the
activation values of the upper limb and lower limb are sig-
nificantly higher than that of other regions, which means that
the movement of the upper limb and lower limb is significant
and is a crucial clue for the activity “playing volleyball”. For
the Attention Map of ZoT (left part of Figure 9), the activation
values of the middle three people are obvious, which means
that they have rich interaction information and the ZoT can
fully learn this discriminative information.

Number of persons. The results in Table VI show the effect
of different numbers of persons on the model performance.
The experiments are conducted on the V-SA benchmark, and
we retain the individuals with higher confidence for 2 and 6
persons. When using only the skeletons of 2 persons, the top-1
accuracy degrades by 25.17% compared to using the skeletons
of 12 persons (46.03% vs 71.20%). When using the skeletons
of 6 persons, the top-1 accuracy is 61.25%, which is also
inferior to using the skeletons of 12 persons. These results
reflect that the interaction information of multiple people is
crucial for recognizing group activities. Notably, our Zoom
Transformer with ZoT blocks can effectively mine the high-
level interaction features.

D. Comparison with State-of-the-arts

We compare the proposed Zoom Transformer model with
the state-of-the-art skeleton-based single-person action recog-
nition methods on both the NTU-RGB+D 60 and NTU-
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TABLE VII
COMPARISON OF THE TOP-1 ACCURACY WITH STATE-OF-THE-ART

SINGLE-PERSON SKELETON-BASED ACTION RECOGNITION METHODS ON
THE NTU-RGB+D 60 DATASET.

Methods X-S (%) X-V (%)
HBRNN (2015) [61] 59.1 64.0
Deep LSTM (2016) [13] 60.7 67.3
ST LSTM (2016) [24] 67.2 77.7
TCN (2017) [63] 74.3 83.1
S-CNN (2017) [28] 80.0 87.2
CNN+M+T (2017) [29] 83.2 89.3
ST-GCN (2018) [8] 81.5 88.3
M-GCNs+VTDB (2019) [65] 84.2 94.2
AS-GCN (2019) [66] 86.8 94.2
2s-AGCN (2019) [17] 88.2 94.9
CA-GCN (2020) [10] 83.5 91.4
SGN (2020) [33] 89.0 94.5
MS-G3D (2020) [35] 89.4 95.0
2s RA-GCN (2020) [34] 86.7 93.4
2s Shift GCN (2020) [36] 89.7 96.0
TS+SS+PS (2021) [67] 88.0 94.9
ST-TR-agcn (2021) [38] 90.3 96.3
Zoom Transformer 90.1 95.3

RGB+D 120 datasets in Table VII and Table VIII, respectively.
The methods which are selected for comparison include the
RNN-based methods [13], [24], [61], [62], the CNN-based
methods [27]–[29], [63], [64], the GCN-based methods [8],
[10], [17], [33]–[36], [65]–[68], and the Transformer-based
method [38]. Notably, our Zoom Transformer model performs
better than most of the state-of-the-art methods. E.g., For
NTU-RGB+D 60, compared with ST-GCN [8], which is one of
the most influential GCN-based models, our results outperform
it by 8.6% (90.1% vs 81.5%) on the X-S benchmark and 7.0%
(95.3% vs 88.3%) on the X-V benchmark. For NTU-RGB+D
120, compared with ST-GCN [8], our results exceed it by 6.9%
(84.8% vs 77.9%) on the X-Sub benchmark and 7.5% (86.5%
vs 79.0%) on the X-Set benchmark. The results verify that our
model has a strong capability to capture motion information
for the skeleton data. Besides, the results also show that our
model is not only suitable for group activity recognition but
is also effective for single-person action recognition.

V. CONCLUSIONS

In this work, we proposed a novel Zoom Transformer model
for the skeleton-based group activity recognition which has
rarely been studied before. The Zoom Transformer model
consists of two parts i.e. the Zoom-in Transformer (ZiT)
and the Zoom-out Transformer (ZoT). Specifically, the ZiT
can extract the low-level motion information of independent
individuals from the skeleton sequence with the help of the
body structure based Relation-aware Map. The ZoT is able
to mine the high-level multi-person interaction information
and reason their relations with the help of the global feature
based Relation-aware Map. The ZiT and ZoT have the same
structure, but process different levels of skeleton features.
Combining ZiT and ZoT, our Zoom Transformer model can
learn distinctive features from the multi-person skeleton se-
quence hierarchically and identify the skeleton-based multi-
person group activity effectively. Moreover, to promote the

TABLE VIII
COMPARISON OF THE TOP-1 ACCURACY WITH THE STATE-OF-THE-ART

SINGLE-PERSON SKELETON-BASED ACTION RECOGNITION METHODS ON
THE NTU-RGB+D 120 DATASET.

Methods X-Sub (%) X-Set (%)
ST LSTM (2016) [24] 55.7 57.9
Clips+CNN+MTLN (2017) [27] 61.8 62.2
GCA-LSTM (2017) [62] 61.2 63.3
ST-GCN (2019) [8] 77.9 79.0
2s-AGCN (2019) [17] 82.9 84.6
SkeMotion (2019) [64] 66.9 67.7
2s RA-GCN (2020) [34] 81.0 82.5
MS-G3D (2020) [35] 86.9 88.4
2s Shift GCN (2020) [36] 85.3 86.6
AdaSGN (2021) [68] 85.9 86.8
ST-TR-agcn (2021) [38] 85.1 87.1
Zoom Transformer 84.8 86.5

study of skeleton-based group activity recognition, we present
and release two new skeleton group activity benchmarks i.e. K-
SA and V-SA, based on the existing video datasets. Extensive
experiments are conducted on these two benchmarks to evalu-
ate the performance of our model. The results demonstrate that
the proposed model is valid to recognize multi-person group
activities and exceeds the GCN baseline by a large margin with
fewer parameters. In addition, experiments on the large-scale
NTU-RGB+D dataset show that our Zoom Transformer model
is also useful for single-person action recognition. We expect
that this work can arouse more investigations about skeleton-
based group activity recognition, and promote the development
of high-level visual relationship understanding.

A. Limitations

• The newly constructed K-SA and V-SA benchmarks are
completely based on the existing video datasets, and au-
tomatically estimate the human pose through the existing
pose estimation algorithm AlphaPose [21]. Limited by
the quality of the raw videos and the performance of
the AlphaPose, the skeleton data contains a lot of noise,
which affects the accuracy of group activity recognition.

• The proposed Zoom Transformer model adopts Multi-
scale Temporal Convolution and we fully test the effect
of the convolution kernel size, however, the Temporal
Convolution does not have a global perception field
like the spatial attention mechanism. Therefore, when
dealing with long skeleton sequences, the global temporal
information extraction ability of our Zoom Transformer
model is still insufficient.

• Our Zoom Transformer model focuses on the multi-
level feature extraction for multi-person group activities.
Although the proposed Zoom Transformer can be used to
recognize the actions of a single person, its performance
for single-person action recognition is slightly inferior
to the state-of-the-art methods (see Table VII and Table
VIII). The Zoom Transformer is constrained to fully
unify the skeleton-based group activity recognition and
the single-person action recognition. The reason is that
fine-grained motion features of human joints are crucial
for single-person skeleton action recognition. However,
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for group activities, the model generally without pay
much attention to the subtle movement of the joints, but
pays more attention to the interactive information among
multiple persons.

B. Future Work

There are several ways to address these limitations, which
are promising to enhance the practical application of our
method for skeleton-based multi-person group activity recog-
nition.

• First, to construct a more useful and advanced dataset
for skeleton-based group activity recognition, we can
manually label the human pose from the videos to obtain
more accurate skeleton data. In addition, we can use the
depth camera to collect 3D skeleton data and establish
an effective dataset that contains the ground truth of the
3D human pose.

• Second, to handle the temporal information of the long
skeleton sequence, we would design an adaptive tempo-
ral attention mechanism to exploit multi-scale temporal
features. Furthermore, how to reduce the computational
complexity of the attention mechanism for the long-
sequence data is also an important issue that is worthy
of exploring.

• Finally, it is meaningful to design a unified Transformer-
based model that is suitable for both multi-person group
activity recognition and single-person action recognition.
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