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Abstract—Existing knowledge distillation (KD) method nor-
mally fixes the weight of the teacher network, and uses the
knowledge from the teacher network to guide the training of
the student network no-ninteractively, thus it is called static
knowledge distillation (SKD). SKD is widely used in model
compression on the homologous data and knowledge transfer on
the heterogeneous data. However, the teacher network that with
fixed-weight constrains the student network to learn knowledge
from it. It is worth expecting that the teacher network itself can
be continuously optimized to promote the learning ability of the
student network dynamically. To overcome this limitation, we
propose a novel dynamic knowledge distillation (DKD) method,
in which the teacher network and the student network can
learn from each other interactively. Importantly, we analyzed the
effectiveness of DKD mathematically (see Eq. 4), and addressed
one crucial issue caused by the continuous change of the teacher
network in the dynamic distillation process via designing a valid
loss function. We verified the practicality of our DKD by extensive
experiments on various visual tasks, e.g. for model compression,
we conducted experiments on image classification and object
detection. For knowledge transfer, video-based human action
recognition is chosen for analysis. The experimental results on
benchmark datasets (i.e. ILSVRC2012, COCO2017, HMDB51,
UCF101) demonstrated that the proposed DKD is valid to
improve the performance of these visual tasks for a large margin.
The source code is publicly available online at1

Index Terms—Static Knowledge Distillation (SKD), Fixed-
weight, Dynamic Knowledge Distillation (DKD), Continuous
optimization, Model Compression, Knowledge Transfer

I. INTRODUCTION

Knowledge distillation (KD) is an important technique since
it can directly transfer knowledge from complex models to a
simple model. For the traditional KD approaches, the teacher
network is often fixed for knowledge transferring, thus they
can be treated as static knowledge distillation (SKD). In
the past few decades, SKD has attracted long-term research
attention [1], [2] due to its wide range of applications in
face recognition [3], video action recognition [4], image super
resolution [5], etc. For most visual tasks, the SKD technology
can optimize the basic network architecture to enable it to
be applied in a smaller and more flexible way. Many studies
have been performed to improve the SKD technology, which
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include the modifications of the loss function of SKD [6],
the model structure of SKD [7], and the knowledge content
extraction of SKD [8], but almost none of them take into
account the drawback of SKD that the teacher network with
fixed-weight constrains the network to learn more potential
Knowledge. Typically, for the traditional SKD method, the
teacher network is fully pre-trained, and the highly abstract
semantic information learned from the teacher network is
output to guide the optimization of the student network. This
strategy can help the student network to quickly obtain the
knowledge of the teacher network, but cannot explore the
teacher model’s potential comprehensively. In addition, the
traditional SKD transfers knowledge from the teacher network
to the student network, while they overlook an important
fact that the teacher network also limits the student network
to learn knowledge. How to address the issue of releasing
restriction imposed by the teacher network is of great concern
for SKD.

Issue 1 – Optimization of KD: The concept of KD was first
proposed by Hinton et al. [2]. He set the output knowledge
from the fixed-weight teacher network as soft labels, and
allowed the student network to learn the real labels and the
soft labels simultaneously. In this way, the knowledge can be
transferred to the student network implicitly. Subsequently, Xie
et al. [9] took the influence of the data itself into account and
added noise to the data to enhance the generalization ability of
the model. Komodakis et al. [10] considered to optimize the
above mentioned SKD structure from the perspective of the
feature layer. However, none of these fixed-weight methods
break through the limitation of the teacher network itself,
where the limitation is reflected in the fact that the amount of
knowledge from a fixed-weight teacher network is settled. In
summary, if the teacher network can be optimized dynamically,
the successive updated knowledge of the teacher network can
promote the optimization of the student network interactively.

Issue 2 – Assessment of KD: In SKD, there are many loss
functions used to measure the effect of knowledge distillation.
To assess the numerical similarity between feature layers of
the teacher and the student, Mean Squared Error (MSE) [11]
is a popular choice. It can enforce a strong constraint, which
brings the outputs of the teacher network and the student
network closer. To evaluate the distribution similarity of the
feature layers, Maximum Mean Discrepancy (MMD) [12] is
a suitable selection, which can pay attention to the similarity
between layers from a higher dimension. To measure the
similarity of the output probability, the softmax loss [7] is
modified to allow the student network to learn the probability
distribution of the teacher network. Besides, Kullback-Leibler
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Fig. 1: Performance comparison of the proposed DKD and
the traditional SKD in different visual application fields. “T”
and “S” denote the teacher network and the student network,
respectively. “Objection”, “Img Rec”, and “Act Rec” denote
object detection, image classification, and video-based human
action recognition, separately. Specifically, on these visual
tasks, the accuracy comparison between our DKD and SKD
is reported separately with respect to the teacher network
and the student network, because our DKD can improve the
accuracy of both, while SKD can only modify the accuracy
of the student network. The percentage numbers represent the
accuracy improvement of DKD over SKD. Taking 0.6% as an
example, it represents that in the “Detection” task, the accuracy
of the teacher network with using the proposed DKD is 0.6%
higher than that of using the SKD.

Divergence (KLD) [13] can perform knowledge distillation
of the output probability, but ignoring the information of the
feature map. In general, the above loss functions can transfer
knowledge from the teacher network to the student network
from multiple perspectives. However, when the teacher net-
work is optimized to improve the overall ability of KD,
none of them can ensure to converge to the good result,
causing the effectiveness of KD is non-guaranteed. In addition
to the awareness of the limitations of the above-mentioned
common loss functions, we also get inspiration by works from
other areas. In GAN [14], since the Earth Mover’s Distance
(EMD) can well measure knowledge transfer between two
features, and it is complementary to KLD, we therefore
combine KLD and EMD into our final loss function to distill
knowledge both from feature and label jointly. Besides, we
analyze the availability of the combination “KLD + EMD”
in mathematics (see Eq. 4 and Eq. 2) and by experiments (see
IV-C1), which show that “KLD+EMD” avoids the common
deterioration of the teacher network and the student network.

Issue 3.1 – Limitation of KD for model compression
on homologous data: As a pioneer, Yim et al. [15] used
the teacher network with frozen weights and designed a
mutual distillation network model, but this method cannot well
satisfy the requirement of model compression. It improves

the robustness of the network, but the accuracy is relatively
low. Later, Romero et al. [1] proposed a staged distillation
strategy, which can deeply exploit the capability of the student
network, and utilizes the teacher network to guide the student
network for further optimization. However, this method only
explores the student network unilaterally. Zhu et al. [16] tried
to introduce the knowledge of the student network into the
teacher network, and applied the gradient information of the
teacher network to guide the training progress of the student
network in turn, but this method makes no attempt to optimize
the teacher network. In addition, for different tasks, Zagoruyko
et al. [10] presented an attention map to optimize the KD in
image classification. Wang et al. [17] designed a model to
optimize the negative samples for KD in object detection. In
summary, these SKD methods for model compression only
improve the student network, neglecting the importance of the
teacher network in the optimization process, which causing
the student network to be unable to learn independently.
Besides, the existing methods are not universal as they usually
dedicated to make the KD model serves more suitable for a
specific application.

Issue 3.2 – Limitation of KD for knowledge transfer on
heterogeneous data: The main investigation in this area is to
learn different kinds of knowledge across domains. Chen et
al. [18] proposed a multi-modal KD method, with the usage
of audio-visual knowledge to improve video representation
learning. However, this method focuses on solving the problem
of multi-source feature fusion, rather than studying how to
integrate multi-source data. Wang et al. [19] exploited a
multi-modal learning framework to migrate multiple teacher
networks’ information on the heterogeneous data to a student
network. In summary, for these methods, mutual integration
and promotion on the heterogeneous data are not well solved
since the weights of the teacher network are fixed.

To address these issues of SKD, as shown in Figure 2,
we exploit a dynamic knowledge distillation (DKD) method,
which can continuously optimize the teacher network and the
student network. Specifically, for our DKD, we integrate the
knowledge of the student network to the teacher network to
help exploring the potential of the teacher network. Besides,
the teacher network will guide the optimization of the student
network from multiple perspectives, e.g. feature learning,
probability prediction. To test its effectiveness, we evaluate
our DKD on two different applications (1) model compression
on homologous data, including the visual tasks of image
classification and object detection, and (2) knowledge transfer
on heterogeneous data, including the visual task of video-based
human action recognition.

For image classification, SKD mainly aims for compressing
the model. By using our DKD method throughout the training
process, the student network transfers part of the class prob-
ability knowledge to the teacher network. In turn, the teacher
network guides the student network to optimize in terms of the
feature map and the class probability. For object detection,
based on the learned DKD in image classification, we con-
tribute new modifications to extract the class probability, which
will be described in detail in the subsequent section III-C. For
video-based human action recognition, SKD primarily goals
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Fig. 2: Model difference between SKD and our DKD. For “SKD”, the student network only distills the value of the feature map
from the teacher network with fixed weights (static). In contrast, for our “DKD”, the student network jointly distills both the
distribution of the feature map (i.e. feature distribution) and the probability of the class prediction (i.e. class probability) from
the teacher network with continuous-renewal weights (dynamic). Specifically, the teacher network and the student network are
both dynamic, as they successively updating during the optimization process iteratively.

for knowledge transfer and knowledge distillation. Normally,
this visual task needs to input two types of heterogeneous
cues i.e. optical flow and RGB video [20], [21]. However,
it is computational cost to estimate optical flow [22]. We
use DKD to transfer the knowledge of optical flow to the
RGB model. At the end, these two types of information can
be obtained directly from the RGB model, accordingly, the
efficiency is significantly boosted. The detail will be illustrated
in the subsequent section III-D. In the experiment part IV-C1,
we will indicate when it converges.

Our DKD greatly promotes the performance of SKD, and
can be effectively applied in many domains. As shown in

Figure 1, the accuracy of both the teacher network and the
student network of DKD have been enhanced.

The main contributions are summarized in three fold:

• We propose a general dynamic knowledge distillation
(DKD) method to enable the knowledge circularly up-
dated between the student network and the teacher net-
work during optimization. As a result, the knowledge
of the student network and the teacher network can
promote each other interactively, and their performance
on different visual tasks are both constantly enhanced.

• An effective loss function, which combines EMD and
KLD, is exploited to address the issue of teacher net-
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works’ knowledge change at the DKD optimization pro-
cess. Remarkably, we prove DKD is convergent and
analyze its effectiveness mathematically.

• We verify the explored DKD is useful for the appli-
cations of model compression on homologous data and
knowledge transfer on heterogeneous data by testing it on
various visual tasks, which including image classification,
object detection and video-based human action recogni-
tion. Their results outperform SKD for a large margin.

II. RELATED WORK

The proposed DKD method exploits a new way to distill
knowledge dynamically and can be applied to many visual
tasks, e.g. image classification, detection, video based human
action recognition, etc. Comparing our DKD method to the
conventional SKD method, great benefit can be gained. The
related works about the investigation of KD on both the theory
and application are introduced below.

A. Knowledge distillation (KD)

KD was first proposed to address the issue of model
compression. To use a small model to obtain high perfor-
mance, Hinton et al. [2] presented a teacher-student based
KD framework, where a complex network is called the teacher
network, and a simple network with lower accuracy is called
the student network. In Hiton’s design, the student network
can extract the knowledge of the teacher network by learning
the feature maps. Except to directly transmitting the network
knowledge to the student, the teacher network can also teach
the student network to learn online. Heo et al. [23] stated that
the student network can apply the learned skills in different
tasks to capture the boundary decision-making of the network.
Zhang et al. [13] used the Kullback–Leibler divergence (KLD)
to turn the class probability predicted from the teacher network
into a label to allow the student network to learn indepen-
dently. This method no longer distinguishes the difference
between the teacher network and the student network, and
shows that only the teacher network learns independently can
bring great changes. Ahn et al. [24] proposed to increase the
characteristics of the middle layer between the teacher network
and the student network from the perspective of mutual
information (MI). This method just considers how to better
measure the results of KD from other aspects. Different from
these methods, we explore a general DKD network, which can
significantly improve the accuracy of the teacher network and
drive the student network to obtain higher performance jointly.

B. Image classification with KD

Image classification is one typical visual application of KD
for model compression. To better perform image recognition,
deep learning has been foremost studied in this field. From the
early VGG [25], GoogleNet [26] to the subsequent outstanding
ResNet [27], the network structure for image classification
has been improved progressively. However, these networks
are too complicated to be applied to mobile devices. Many
researchers have tried to lighten the deep learning model by

KD. Yang et al. [28] changed the model structure to realize
knowledge distillation, but he ignored the importance of the
feature map information in image classification. Chen et al.
[29] created a fast-to-execute student model to mimic a large
teacher network, which can guarantee the transfer information
of the feature layer. Guan et al. [30] introduced the feature
aggregation strategy to imitate the multi-teacher distillation
in the single-teacher distillation framework. He brought more
information by adding more teacher networks. However, the
types of the input information are limited, and adding more
teacher networks with the similar input cannot fundamentally
improve the learning ability of the student network. Besides,
in the subsequent investigations, all the teacher networks fix
their weights, which constraining the amount of knowledge
that the student network can learn. In contrast, the method of
DKD proposed by us breaks the limitations due to the teacher
network, where it enables the student network to optimize
continuously.

C. Object detection with KD

Object detection is another typical visual application of KD
for model compression. The object detection technique has
undergone rapid progress since many kinds of object detection
algorithms have been exploited, such as RCNN [31], Fast
RCNN [32], Faster RCNN [33], YOLO [34], FCOS [35] and
so on. One phenomenon is that the object detection models
become larger and larger, therefore it is urgent to light-weight
them. KD provides a choice to address this issue. Chen et al.
[36] used the traditional Faster RCNN as the basis to conduct
KD in three aspects: the feature layer, the classification layer,
and the regression layer. This method transfers the knowledge
of a large teacher model to a small student model, and achieves
high accuracy. Hoffman et al. [37] incorporated the depth
information to train a RGB object detection model at the
KD process. This approach improves the performance by
introducing additional information in KD, which greatly limits
its application in practice. Dai et al. [38] proposed a new
distillation method for object detection based on discriminative
examples, which does not consider the positive or negative
distinctions of the ground truth. Wei et al. [39] presented
a Quantization Mimic, which first quantizes the large net-
work, then mimics a quantized small network. However, this
method only concerns the information interaction from the
feature maps. In object detection, the information that can be
learned is diverse, such as regression box, prediction class,
etc. However, the above object detection methods with KD,
the knowledge flows in one direction. Different from them,
With our DKD, the knowledge of the teacher network and the
student network is formed into a circulation, and the accuracy
of them are also improved simultaneously.

D. Video human action recognition with KD

Video recognition is an important visual application of KD
for knowledge transfer. For the special video-based human
action recognition, one of the representatively techniques is
the two-stream network [40], in which one is the RGB stream
that is used to extract the appearance information, and another
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is the optical flow based motion stream that is applied to
capture the motion information. Because the parameters of the
two-stream model are too large, many methods, which aim to
reduce the model complexity by KD, have been constantly
proposed. Stroud et al. [41] improved the representation of
motion through KD, which effectively merged the two streams
into a single stream to reduce the complexity of the model. But
this method also brings a decrease in accuracy. Considering
optical flow estimation is time consuming and preventing the
two-stream models to be applied to some real-time tasks,
Crasto et al. [11] explored a method via KD to allow the
RGB model to simulate the output of the optical flow stream.
In this way, it only requires optical flow in the training
phase while avoids to use optical flow in the testing phase.
But in order to get better results, a multiple-stream fusion
strategy is utilized, which significantly decreases the goal of
lightening the model. On the other side, many 3D models
play an important role in action recognition, e.g. I3D [42],
C3D [43], etc. KD is also effectively used in 3D models.
Feichtenhofer et al. [44] presented a SlowFast network, which
reduces the amount of 3D network parameters, and uses KD
to combine the motion and appearance information to simulate
the human eye to observe moving objects. Different from the
above methods, we apply the proposed DKD to the task of
video-based human action recognition. Our DKD circles the
knowledge of the optical flow model and the RGB model, so,
the RGB model gets more motion information, and the optical
flow model obtains more apparent information. Finally, the two
are combined to obtain a better action recognition model.

III. METHODOLOGY

Our goal is to design an effective DKD framework, which
can be applied in various visual fields for model compression
(e.g. image classification and object detection) and knowledge
transfer (e.g. video based human action recognition). Figure 2
shows the overall framework of our DKD model. Specifically,
the teacher network will guide the student network to learn
knowledge twice, i.e. in the feature map and in the class label,
to transfer knowledge to the student network. Importantly,
when the student gets the knowledge of the teacher, the student
will also transmit knowledge to the teacher network, making
the teacher network continuously improves itself.

A. The structure of DKD

Figure 3 shows the diagram of the proposed DKD model.
The teacher network is large and has vast parameters, while the
student network is much smaller. We use different distillation
functions (i.e. EMD and KLD) at the two stages to extract
the feature knowledge and the label knowledge.

In the first stage, the feature map of the student network
(we denote it as X here), which is learned to imitate the
feature map of the teacher network (we denote it as Y here)
by utilizing the EMD. The EMD(X,Y ) metric with regard
to the feature map distributions of X and Y over χ × χ can
be defined as [45]:

EMD[X,Y ] =
inf

γ ⊂ Γ

∫
χ×χ

γ||x− y||2dγ(x, y) (1)

where Γ is the set of all possible joints on χ× χ.
EMD(X,Y ) measures the minimum cost that changes

from the distribution of feature map X to the distribution of
feature map Y [45]. The movement from X to Y is done
via the coupling γ. It is easy to see that when the difference
between the probability distributions of X and Y is getting
closer and closer, the EMD(X,Y ) is approaching to 0. An
in-depth explanation of these concepts can be found in [46].
Due to this characteristic, compared with the traditional Mean
Squared Error (MSE) and Maximum Mean Discrepancy
(MMD), EMD(X,Y ) has a loose constraint relationship
and is suitable for measuring the difference between the
feature map distributions of the student network and the
teacher network (i.e. X and Y here) in the dynamic model.

In the second stage, KLD is used as the constraint loss,
which is defined as follows:

KLD(lt, ls) =

N∑
i=1

M∑
m=1

lmt (xt) log
lmt (xt)

lms (xs)
. (2)

As shown in Figure 3, lmt (xt) and lms (xs) refer to the
probability of class m at sample x. KLD can describe the
distance between the two probability distributions, so it is more
suitable for distilling the class probability. lt and ls here are
called “soft labels”. Compared with the real labels which only
have two values of 0 and 1, the information in the “soft labels”
is richer. We input the “soft labels” of the student network as
the additional knowledge to the teacher network. Although the
accuracy of the “soft labels” from the student network is low,
the wrong information is also valuable and can help the teacher
network to learn more error examples. Through the above
two stages of distillation, the joint optimization of the student
network and the teacher network is realized. LossAT (l, Y )
is task-related, which represents the gap between the output
label and the real label, and it will change accompanying with
different tasks.

The overall loss function for our DKD is formulated as
follows:

LossT = β1KLD(ls, lt) + LossAT (lt, Y )

LossS = αEMD + β2KLD(lt, ls) + LossAT (ls, Y )
(3)

where α, β1, β2 are the zoom scales. For β1 in the teacher
network, it can limit the cost of learning “soft labels” from
the student network. Excessive student network information
will carry a large number of wrong labels, which will lead
the teacher network to deterioration in the wrong way. An
appropriate β1 can control the optimization of the teacher
network. LossT and LossS denote the loss function of
the teacher network and the student network, respectively.
αEMD + β2KLD can form a dynamic flow in which the
student network learns knowledge from the teacher network,
and β1KLD can form a dynamic flow in which the teacher
uses the student’s knowledge to optimize itself. Finally, in-
corporated αEMD + β2KLD with β1KLD, a dynamic
circulation flow is formed in our DKD model.

The DKD model we proposed can distill knowledge from
the feature layer as well as the final class probability. For most
visual tasks, both types of information are available, thus our
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Fig. 3: The diagram of our DKD model. It includes both the feature distribution distillation and class probability distillation.
In the feature distribution distillation stage, we use EMD as the constraint function, and in the class probability stage, we use
KLD for mutual distillation. For model compression, the teacher network and the student network input the homologous data.
For knowledge transfer, the two networks are inputted by the heterogeneous data. Notably, our DKD model is easy to design,
in addition to KLD and EMD, LossAT (lt, Y )/LossAT (ls, Y ) (the subscript “s” and “t” respectively refers to “student”
and “teacher”) represents a task-related loss function which changes accompanying with the visual tasks.

DKD can be easily applied to them and without too much
variation. It means that our DKD is an universality method.

B. The advantage of EMD

From Eq. 3, we see that the core of our DKD is that it
can effectively distill knowledge in a dynamic way, however,
the continuously optimized teacher network in DKD will
cause non-convergence to KD. To solve this problem, we
chose EMD as the loss function. Remarkably, we analyze its
effectiveness mathematically below. Besides, we also verify
its performance in the dynamic distillation experiments (see
subsection IV-C2).

We set D(x, y) as the distance metric. For the EMD, we can
directly get the following mathematical formula from [45]:

D(x, y +△y) ≤ D(x, y) +D(y, y +△y)

≤ D(x, y) + V
1
2

(4)

where V = E[||△y||22] is the variance of △y. When the teacher
network is optimized based on the pre-training weights, we set
a very small learning rate to it, which is equivalent to add a
small change in y to become y +△y. D(x, y +△y) is only
related to △y except for x and y. In addition, there is an upper
limit for D(x, y+△y). Consequently, the network with EMD
is convergence.

In contrast, for MSE, we can get the following formula:

D(x, y +△y) = D(x, y)2 − 2△ yD(x, y) +△y2 (5)

According to this formula, we find that the D(x, y + △y)
for MSE is related to the multiplication of △y and D(x, y).
Compared with EMD, △y has an additional scaling scale
related to the original data D(x, y). If the distribution gap

between x and y is too large or too small, the small △y will not
work, therefore, the network with MSE is difficult to converge.

From the above derivation process, we can summarize the
following advantages of EMD: (1) In the dynamic networks,
the EMD is just related to △y (derives from the learning
information) and has an upper limit, which enables the entire
network to converge. In contrast, MSE used in static distilla-
tion does not meet this requirement; (2) According to [47], we
know that EMD can continuously transform one distribution
into another while maintaining the geometric characteristics of
the distribution itself. Which means the student network can
maintain its independence while learning the knowledge of the
teacher network. This advantage ensures the student network
changes slowly following with the teacher network’s variation;
(3) The generally used functions, e.g. Kullback-Leibler (KL)
divergence [48] and Jensen-Shannon (JS) divergence [48],
can measure the probability distribution. However, when the
probability distributions of the teacher network and the student
network overlap little, they fail to assess the two distributions
of these two networks accurately. In contrast, the EMD can
reflect the distance of the two distributions precisely, since
the student network is trained from scratch, its probability
distribution overlaps very little with the teacher network. Due
to these reasons, EMD is suitable for measuring the distance
between the teacher network and the student network in the
dynamic model.

C. Model compressing on homologous data

1) Image classification: Figure 4 shows the proposed DKD
method for image classification, and we choose ResNet as the
basic network for experiments due to ResNet is one of the
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Fig. 4: The diagram of our DKD based image classification
model (ResNet is chosen as the basic network for example).
We show two kinds of student networks: where ResNet34
is selected as the teacher network, one student network is
ResNet18, and the other student network is ResNet34-half.

most widely used networks in computer vision. As shown in
the figure, we divided DKD into two steps. Specifically, in the
first step, the student distills the feature map by EMD; in the
second step, the student and the teacher mutually distill the
class probability by KLD. Loss(l, Y ) in Eq. 3 at here refers
to the cross-entropy loss function, accordingly, the overall
formulation of our DKD based image recognition is expressed
as:

LossimaT = β1KLD(ls, lt) + CrossEntropy

LossimaS = αEMD + β2KLD(lt, ls) + CrossEntropy
(6)

To better realize DKD, we designed two ways to combine
the teacher network and the student network. As shown in
Figure 4, the first one is that both the teacher network and the
student network are completely same as the original ResNet
model, e.g. ResNet34 (teacher) and ResNet18 (student). The
second one is that the student network derives from the
teacher network, e.g. ResNet34 (teacher) and ResNet34-half
(student). Here, ResNet34-half represents to halve the number
of channels of ResNet34. The reason for choosing these two
student networks is that, compared with the teacher network,
ResNet18 is mainly different in the number of network layers,
and ResNet34-half is different in the network channel.

2) Object detection: Figure 5 shows the application of our
method in object detection. We select the FCOS network [35]
as the baseline for experimenting. The overall knowledge
distillation framework is same as our basic DKD. For the
pyramid cascade structure in FCOS, we use KLD to distill
each layer. The Loss(l, Y ) in Eq. 3 at here refers to the
original FCOS loss function, which includes a clsloss for class
prediction, a regloss for box regression, and a centernessloss
for centerness. The overall formulation of our DKD based

object detection is expressed as:

LossdetT = β1

n∑
i=1

KLD(ls, lt) + LossFcosT

LossdetS = αEMD + β2

n∑
i=1

KLD(lt, ls) + LossFcosS

(7)
where n represents the level of the pyramid (we set n = 5
as [35]). We perform DKD based mutual distillation on all
5 layers. Since different layers have different sizes in object
detection, the DKD at all layers can learn useful knowledge
to the greatest extent.

D. Knowledge transfer on heterogeneous data

1) Video-based human action recognition: In addition to
compressing model, knowledge distillation also has many
applications in knowledge transfer on heterogeneous data.
Importantly, video-based human action recognition is a rep-
resentative task. In the field of human action recognition,
the two-stream network is one of the primary strategies [40].
The first stream is aiming to learn the motion information
mainly from optical flow, and the second stream is used to
capture the appearance information from RGB. However, it is
time consuming to extract the optical flow information, which
hinders the practical application of the two-stream method. Al-
though optical flow and RGB are two types of heterogeneous
data, considering that optical flow is derived from RGB video
frames, it is feasible to migrate the optical flow information
to the RGB model. In the SKD based method [11], as shown
on the left side of Figure 6, optical flow is set as the teacher
network, RGB is set as the student network, and MSE is used
as the constraint. However, this method has similar drawbacks
like SKD, i.e. the teacher network is static. To address this
issue, we apply our DKD to this network (see the right side
of Figure 6). The 3D ResNeXt-101 [49] is selected as the basic
network for experimenting. Approximate to the above visual
tasks, DKD here also distills two kinds of knowledge, i.e. the
feature map and the class probability. The Loss(l, Y ) in Eq.
3 at here refers to the cross-entropy loss function. The overall
formulation of our DKD based human action recognition is
expressed as:

LossactT = β1KLD(ls, lt) + CrossEntropy

LossactS = αEMD + β2KLD(lt, ls) + CrossEntropy
(8)

Since the data source of the teacher network and the student
network is different, it is easy to produce poor results if we
start the DKD training directly from the scratch. Therefore,
we firstly use the SKD to make the student network infor-
mation which is learned from RGB and the teacher network
information which is extracted from optical flow close to each
other. Then, the proposed DKD is utilized to break through
the limitations of SKD – enabling the RGB model to better
learn and integrate the knowledge of the optical flow model.
As a result, the performance of both the teacher network and
the student network is improved.
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Fig. 5: The diagram of our DKD based object detection model. We use the FCOS model [35] to explore the effect of DKD
in object detection. In this model, we construct a pyramid structure, which enables us to distill the class probability at each
level. As well, KLD is chosen as the constraint loss function.
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Fig. 6: The diagram of our DKD based action recognition model. “Flow” represents the optical flow model. We compare two
kinds of knowledge distillation models, i.e. “SDK” and “DKD”. In “SDK”, the optical flow weights are freezed, and the optical
flow based teacher network uses MSE as the constraint loss function. In “DKD”, both the optical flow stream and the RGB
stream are dynamic networks, respectively with EMD and KLD as the constraint loss function.

E. Summarization of DKD in different visual tasks

Our DKD shares the same spirit across different visal tasks,
where the information of the teacher and student networks
forms a dynamic cycle. In this cycle, the student network
focuses on improving its feature extraction (EMD) and recog-
nition (KLD) while the teacher network identifying wrong
recognition (KLD). This property is generic for various visual
tasks (e.g., image recognition, object detection, video action
recognition, etc.). Accordingly, when applying DKD to the
tasks in different domains, LossAT (l, Y ) at Eq. 3 is the

only part that requires targeted adjustment. E.g., for image
recognition, we directly apply DKD and set LossAT (l, Y )
to CrossEntropy loss at Eq. 6. For object detection, we
utilize DKD multiple times in the pyramid structure and set
LossAT (l, Y ) as the LossFcos loss at Eq. 7. For video action
recognition, we change LossAT (l, Y ) to CrossEntropy loss
at Eq. 8.

IV. EXPERIMENT

We extensively validate the effectiveness of our DKD
method on three different visual tasks with bench-
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mark datasets: image classification using the ImageNet
ILSVRC2012 [50] dataset, object detection using the MS
COCO 2017 dataset [51], and video-based human action
recognition using both the HMDB51 [52] and UCF101 [53]
datasets. We then ablate the key ingredients of DKD to verify
our design.

A. Evaluation Datasets

We conduct experiments on benchmark datasets of three
visual tasks to evaluate the versatility of our DKD method.

ILSVRC2012. ILSVRC2012 is one of the ImageNet dataset
family members, serving as a popular benchmark for large-
scale image classification. Its images are collected through
Flickr and other search engines. The training set consists of
over 1.2 million images covering 1,000 semantic categories
which include both the internal nodes and leaf nodes of
ImageNet. The validation and testing sets consist of 50,000
and 100,000 images, respectively, where the later has no
publicly available class annotations.

MS COCO2017. MS COCO2017 is a publicly accessible
large object detection dataset produced and maintained by
Microsoft. It covers 80 object categories with diverse scenes,
and all its images are collected via Flickr and Amazon’s
Mechanical Turk (AMT). MS COCO2017 contains 118287,
5000, and over 40670 images for training, validation, and
testing, with high quality annotations.

HMDB51. HMDB51 consists of 51 classes of actions
covering 6849 videos collected from YouTube, and other
video websites. Each action has at least 51 videos with the
resolution of 320×240. Its action class includes general facial
actions, facial manipulation and object manipulation, general
body actions, interactive actions with objects, and human body
actions.

UCF101. UCF101 provides videos of 101 classes of actions
captured from YouTube. Each action class consists of moves of
25 people, where each person exhibits 4 to 7 groups of actions.
It contains 6.5G video by total, where all videos are fixed to
the resolution of 320 × 240. All 101 classes of actions can
be gathered into 5 sets: actions of human-object interaction,
human-human interaction, musical instrument performance,
and sports action. UCF101 covers diverse object variations
including changes of appearance, posture, object scale, back-
ground, texture, and etc.

B. Implementation Details

All experiments are implemented on Pytorch, the hyper-
parameter settings of training/evaluation with respect to dif-
ferent visual tasks are adjusted accordingly.

Image classification. We compare our DKD method with
other related methods on the raw and modified ResNets [27].
We adopt the basic training/evaluation protocols to randomly
reshaped and cropped input images to the resolution of 224×
224. Models are trained via SGD optimization with weight
decay of 10−4 and momentum of 0.9. We assign different
start learning rates for the teacher and student networks, where
the former and later are set to 10−5 and 0.1 by default,

respectively. Note that the teacher network usess the pre-
trained weights while the student network trains from scratch.

Object detection. Our DKD model and the compared
methods are evaluated on FCOS [35], which is a popular
object detection framework. We adopt the Adam optimizer.
The input images, which are originally 224×224, are reshaped
to the resolution of 667×667 to adapt to our experiments. The
learning rates for both the teacher and student networks are
set to 10−4. Note that the pre-trained weights of the teacher
network are not trained exhaustively, we presume that there is
still room for further improvement.

Video action recognition. We employ 3D ResNeXt-
101 [49] as the backbone. For optical flows, we extract frames
at 25 fps and resize them to at least 256 pixels for each
image. We utilize the TV-L1 algorithm [54] to compute optical
flow with default OpenCV parameter settings. As each optical
flow is a two-dimension vector, we preserve u and v, i.e.,
the corresponding directional components of x- and y-axis, in
two different pictures, respectively. We truncate the values of
all optical flows to a bounded range [−20, 20] and then map
them to [0, 255]. Following with [11], clips with 64 frames
are selected as the inputs for networks. At the training phase,
we randomly crop all input video frames to the resolution of
112×112. Each input video frame and optical flow image are
subtracted by the ActivityNet [55] mean of the RGB frame and
a value of 127.5, respectively. For the RGB and optical flow
streams, we use the SGD optimization with a weight decay
of 0.0005 and a momentum of 0.9 to fine-tune the models
that are pre-trained on Kinetics400. At the testing phase, we
apply center crop to all non-overlapping clips and calculate
their average scores.

C. Model Compression on homologous data

TABLE I: The performance of ResNet18 with different train-
ing strategies. “From scratch + Dynamic” denotes training
ResNet18 with our proposed DKD from scratch, and “From
weight + Dynamic” represents training ResNet18 with our
proposed DKD by loading the pre-trained weights from the
public accessible model.

ResNet18 Accuracy

From scratch 64.7
From scratch+Dynamic 70.9

From weight 69.8
From weight+Dynamic 70.6

1) Image recognition: For image recognition, we set the
parameters α , β1, β2 of our DKD (see Eq. 6) to 0.0025,
0.1 and 0.5, respectively, according to its experimental per-
formance. We observe the loss value of each part, and find
that when the overall loss converges to a minimum, each
part, i.e. α × EMD, β2 × KLD and CrossEntropy, has
the similar value in the student network. In other words, when
the model is optimal, the effect of each part is close to the
same. To evaluate which training strategy is more suitable
for the proposed DKD, we utilize the popular ResNet34 [27]
and ResNet18 [27] as the backbone for the teacher network
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TABLE II: Comparing the effects of our dynamic distillation
(DKD) and the traditional static distillation (SKD) for image
classification on the ILSVRC2012 dataset. Since SKD does
not improve the accuracy of the teacher network, the accuracy
of “SKD” and “Raw model” in the teacher network are the
same.

Model Raw model SKD DKD

ResNet34(t) 73.3 73.3 73.9
ResNet18(s) 69.7 70.3 70.9
ResNet152(t) 78.3 78.3 78.7
ResNet50(s) 76.1 76.5 76.8

ResNet34(t) 73.3 73.3 73.8
ResNet34-half(s) 64.1 64.7 65.3

ResNet50(t) 76.1 76.1 76.6
ResNet50-half(s) 71.7 71.9 72.2

and the student network. Note that the accuracy of ResNet18
in our experiment with the strategy “From scratch” is lower
than “From weight”, since no targeted training augmentations
are applied. As shown in Table I, by using our dynamic
distillation, no matter with (“From weight+Dynamic”) or
without (“From scratch+Dynamic”) the pre-trained weights,
clear gains on accuracy are achieved (70.6% vs 69.8%, 70.9%
vs 64.7%). Specially, the strategy dynamic distillation with
training from scratch (i.e. “From scratch+Dynamic”) shows su-
perior result to others. Moreover, Figure 7 further demonstrates
that dynamic distillation with training from scratch (i.e. “From
scratch+Dynamic”) introduces both higher accuracy and faster
optimization. This is because for dynamic distillation with
pre-trained weights, it only shows notable improvement on
accuracy at the late training stages, indicating that the dynamic
distillation is insufficiently utilized when training with the pre-
trained weights. It means that our DKD can help the network
to improve the distillation effect in the initial and final stages,
and avoiding the situation where both the teacher network and
the student network become bad simultaneously.

As reported in Table II, the traditional SKD can only
improve the accuracy of the student network, in contrast, our
DKD introduces gains to both the teacher network and the
student network. Furthermore, our DKD achieves much higher
improvement to both the simple and complex networks than
SKD. Specifically, for the model with ResNet34 as a teacher
network and ResNet18 as a student network, our DKD gets
a significant enhancement. Specifically, compared with “Raw
model”, SKD and DKD respectively introduces 0.6% (70.3%
vs 69.7%) and 1.2% (70.9% vs 69.7%) increases on accuracy,
where the improvement of DKD is double that of SKD. For
the teacher-student of ResNet152 and ResNet50, SKD and
DKD show 0.7% (76.8% vs 76.1%) and 0.4% (76.5% vs
76.1%) improvements on accuracy in contrast to “Raw model”,
where the improvement of DKD is 75.0% higher than that
of SKD. Noticeably, the teacher-student model “ResNet152-
ResNet50” contains far more parameters than “ResNet34-
ResNet18”, which means that the improvement brings by our
DKD on the simple model is more significant.

To evaluate the case that the teacher-student networks under
the same structure but with different parameters, we reduce the

half number of filters on each layer of ResNet34 and ResNet50
to produce the networks ResNet34-half and ResNet50-half.
We respectively utilize ResNet34-half and ResNet50-half as
the student networks and use their corresponding original
ResNets as the teacher networks. Table II shows that our DKD
obtains accuracy improvement by 0.5% (73.8% vs 73.3%)
on ResNet34 and 1.2% (65.3% vs 64.1%) on ResNet34-half,
as well as 0.5% (76.6% vs 76.1%) on ResNet50 and 0.5%
(72.2% vs 71.7%) on ResNet50-half. These results reveal
that DKD boosts the corresponding student network more
significantly than SKD, since the student network contains
fewer learnable parameters (i.e., lower capability of repre-
sentation). Besides, DKD introduces superior enhancement to
both learning strategies of extracting knowledge with scratch
and SKD. In summary, DKD shows better performance to the
models that with fewer learnable parameters.

We analyze the reason why DKD exceeds SKD and find that
DKD forms a dynamic circular flow. The motivation of our
dynamic circular flow can be summarized into two points: (1)
From the perspective of the theoretical point, dynamic circular
flow can form a positive feedback between the teacher network
and the student network. With EMD, the knowledge of the stu-
dent network is used to form a small interference to the teacher
network like △y in Eq. 4, which promotes the optimization
of the teacher network. Meanwhile, the student network can
further learn knowledge from the teacher network by KLD.
In this way, a dynamic circulating flow is formed, which can
bring positive changes to the teacher network and the student
network simultaneously. (2) From the perspective of model
potential, the dynamic circulation flow can break through the
limitations brought by the teacher network with fixed weights
to explore the model potential. Specifically, the network with
SKD is unable to adjust its output due to the weights cannot
be interactive renewed continuously. In contrast, the proposed
DKD is able to assist the teacher network to avoid incorrect
information guided by the interactive knowledge of the student
network, which helps the network to overcome the constraint
of itself.

2) Object detection: To verify the effectiveness of our
DKD method on the task of object detection, two popular
frameworks, i.e. RetinaNet [56] and FCOS [35], are selected
for evaluation on different accuracy metrics. All input images
are resized to the resolution of 667× 667 pixels. We train all
methods from scratch.

For RetinaNet, we respectively apply RetinaNet-ResNet50
(DKD) and RetinaNet-ResNet50-half (DKD) as the teacher
network and the student network. Table III reports the perfor-
mances of RetinaNets with and without our DKD. Models with
DKD outperforms their counterparts without DKD by 1.0%
(30.8% vs 29.8%) and 0.8% (28.3% vs 27.5%) in accuracy
on AP (i.e. the primary metric), respectively. Particularly, the
student network helps the teacher network achieves significant
accuracy improvement in detecting medium-size and large-
size objects, where the gains can reach to APm 1.6% (35.1%
vs 33.5%) and APl 1.5% (45.4% vs 43.9%), respectively.
Meanwhile, the teacher network helps the student network in
detecting small-size objects to get improvement by APs 0.9%
(11.3% vs 10.4%) as the positive feedback. The good object
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TABLE III: Experiment on RetinaNet [56] for object detection on the MS COCO2017 dataset. RetinaNet-ResNet50 and
RetinaNet-ResNet50-half denote the RetinaNet framework with backbones of ResNet50 and ResNet50-half, respectively.
“(DKD)” means models optimized with our DKD method.

Method Epoch AP AP50 AP75 APs APm APl

RetinaNet-ResNet50
10 25.0 38.8 26.6 8.6 27.8 38.1
20 29.6 44.6 31.4 11.7 33.3 43.9
30 29.8 45.1 31.8 11.8 33.5 43.9

RetinaNet-ResNet50 (DKD)
10 26.4 40.7 28.1 10.0 29.8 39.6
20 30.3 45.6 32.4 12.6 34.5 44.7
30 30.8 46.0 32.9 12.6 35.1 45.4

RetinaNet-ResNet50-half
10 23.4 36.7 24.7 7.9 25.7 35.7
20 27.4 42.4 29.5 10.0 30.8 41.7
30 27.5 42.9 29.9 10.4 31.3 42.3

RetinaNet-ResNet50-half (DKD)
10 24.7 38.8 25.9 9.1 27.2 37.5
20 28.0 42.8 29.8 10.7 31.3 42.4
30 28.3 43.3 30.3 11.3 31.6 42.9
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Fig. 7: Training ResNet18 with different distillation strategies.
We evaluate three different training strategies, i.e., static dis-
tillation, dynamic distillation, and training from scratch. We
adopt the very basic training protocols without applying any
targeted augmentations.

detection performance is obtained partly due to a dynamic
bidirectional positive feedback flow is formed in the DKD
model.

These improvements demonstrate that DKD enhances the
representational capability of both the teacher and student
networks through communicating their informative cues dy-
namically. Similar phenomenons can be also observed in
Figure 7, where our DKD helps to continuously exploit and
exchange meaningful information of the teacher network and
the student network to boost the optimization.

We conduct a targeted ablation study on FCOS to demon-
strate the detailed effects of our designs. First, we indepen-
dently evaluate the effects of KLD and EMD by compar-
ing them to the raw training strategy without applying any
knowledge distillation. As shown in Table IV, compared to
“ResNet50-half-FCOS”, training models with KLD, EMD,
and KLD+EMD introduce accuracy gains by 0.8% (24.7%
vs 23.9%), 1.9% (25.8% vs 23.9%), and 2.2% (26.1% vs

TABLE IV: An ablation study for DKD on ResNet50-half-
FCOS about object detection on MS COCO2017. “ResNet50-
FCOS” and “ResNet50-half-FCOS” denote FCOS frameworks
with ResNet50 and ResNet50-half backbones, respectively.

Model MAP

ResNet50-FCOS 35.4
ResNet50-half-FCOS 23.9

ResNet50-FCOS(t)+EMD+KLD 36.0
ResNet50-half-FCOS(s)+MSE 25.0
ResNet50-half-FCOS(s)+KLD 24.7
ResNet50-half-FCOS(s)+EMD 25.8

ResNet50-half-FCOS(s)+EMD+KLD 26.1

TABLE V: Performance of DKD and SKD with the Swin
Transformer model on the ILSVRC dataset. “SW-T(s)” and
“SW-S(t)” represent Swin-Tiny and Swin-Small as the student
network and the teacher network, respectively. “Raw Acc”
represents the raw accuracy of the model without SKD and
DKD.

Model Raw Acc Acc Params FLOPs

SKD SW-T(s) 81.0 81.4 28M 4.5G
SW-S(t) 83.1 83.1 50M 8.7G

DKD SW-T(s) 81.0 81.7 28M 4.6G
SW-S(t) 83.1 83.4 51M 8.7G

23.9%), respectively. It shows that both KLD and EMD are
able to incorporate meaningful cues from the teacher network
into the student network to compensate the learning process.
However, the accuracy improvement brings by KLD is com-
paratively low, because KLD is responsible for distilling class
probabilities, which only contains highly abstract semantic

TABLE VI: Performance of DKD and SKD with the Swin
Transformer model on the COCO dataset. The backbone is
“SW”, and the model is “Mask RCNN” [57].

Model Raw Acc
(mAP)

Acc
(mAP) Params FLOPs

SKD Mask RCNN + SW-T(s) 43.5 43.9 43M 279G
Mask RCNN + SW-S(t) 46.0 46.0 54M 342G

DKD Mask RCNN + SW-T(s) 43.5 44.1 45M 281G
Mask RCNN + SW-S(t) 46.0 46.5 55M 344G
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Fig. 8: Comparison of DKD and SKD with different models for object detection. We use ResNet50-FCOS as the teacher network
and ResNet50-half-FCOS as the student network. “ResNet50(t)” and “ResNet50(old)” denote the effects of ResNet50-FCOS
with and without DKD, respectively. Similarly, “ResNet50-half(static)” and “ResNet50-half(dynamic)” denote ResNet50-half-
FCOS with SKD and DKD, respectively.

features. Additionally, we compare DKD to the existing SKD
methods in Table IV, where the results display that both
our explored EMD and EMD + KLD outperform MSE
by a clear margin (i.e., 0.8% and 1.1%). Specifically, with
KLD + EMD, “ResNet50-FCOS+KLD+EMD” achieves an
accuracy gain by 0.6% (36.0% vs 35.4%) to its corresponding
raw teacher network. Figure 8 shows that our DKD is able
to reinforce the optimization of the teacher network and the
student network jointly.

Actually, the proposed DKD is mainly used to the backbone
models to improve their ability to learn useful knowledge.
Specifically, we selected the state-of-the-art backbone “Swin
Transformer model” [58] for testing. For the image recognition
task, as shown in the Table V, on the ILSVRC dataset,
for the student network, compared to “Raw Acc”, our DKD
obtains 0.3% (83.4% vs 83.1%) accuracy improvement while
SKD with no accuracy enhancement. For the teacher network,
compared to “Raw Acc”, our DKD obtains 0.7% (81.7% vs
81.0%) accuracy improvement while SKD gains 0.4% (81.4%
vs 81.0%) accuracy enhancement, where the improvement
brings by our DKD is 75.0% (0.7% vs 0.4%) higher than SKD.
For params (29M vs 28M) and FLOPS (4.6G vs 4.5G), there is
no significant difference between our DKD and the traditional
SKD. For the object detection task, as shown in VI on the
COCO dataset, for the student network, compared to “Raw
Acc”, our DKD gets 0.5% (46.5% vs 46.0%) mAP accuracy
improvement while SKD without any accuracy enhancement.

For the teacher network, compared to “Raw Acc”, our DKD
gets 0.8% (44.3% vs 43.5%) mAP accuracy improvement
while SKD achieves 0.4% (43.9% vs 43.5%) accuracy en-
hancement, where the improvement brings by our DKD is
one time (0.8% vs 0.4%) higher than SKD. Again, there is
not much parameters (43M vs 45M) and efficiency (279G vs
282G) difference between our DKD and the traditional SKD.
In summary, compared with SKD, our DKD only changes the
loss function and the training method, without changing the
model structure. Consequently, the parameters and efficiency
between them are insignificant.

D. Knowledge transfer on heterogeneous data

1) Experiments on DKD for video action recognition:
To evaluate the performance of our proposed DKD on video
action recognition, parameters β1, β2 and α in Eq. 8 are set
to 5, 5 and 0.1, respectively. As shown in Table VII, all the
evaluated knowledge distillation strategies i.e. “Static”, “Static
+ Dynamic”, and pure “Dynamic” can boost the accuracy of
action recognition. For the RGB models on HMDB51-1 [52]
and UCF101-1 [53], our “Dynamic” (DKD) strategy boosts the
performance of “Static” (SKD) by 0.7% and 0.5% on accuracy,
respectively. In addition, our DKD further introduces slightly
gain by merging them (i.e. “Static + Dynamic”) to train the
networks. It reals that our DKD is valid to work together with
SKD, and the hybrid strategy “Static + Dynamic” is a little bit
better than our pure “Dynamic”. Note that since UCF101 has
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TABLE VII: Knowledge distillation experiments on UCF101
and HMDB51 for action recognition. HMDB51 and UCF101
are divided into three parts. HMDB51-1 and UCF101-1 denote
the first part of these two datasets, respectively.

Data Method Flow(t) RGB(s)

HMDB51-1

Original 75.9 73.5
Static 78.9

Dynamic 79.6
Static+Dynamic 76.1 79.7

UCF101-1

Original 95.7 95.2
Static 96.7

Dynamic 97.2
Static+Dynamic 95.9 97.3

TABLE VIII: Comparison of DKD with the state-of-the-art
video-based action recognition methods. The accuracy on
UCF101 and HMDB51 are averaged over 3 dataset splits. The
results of other methods are quoted from the original papers.

Method Pre-train UCF101 HMDB51

C3D [42] Sports-1M 82.3 56.8
Inception3D [59] Kinetics 87.2 56.9
C3D+iDT [42] Sports-1M 90.4

I3D [43] ImNet+Kin 94.6 74.8
ResNext101 [49] Kinetics 94.5 70.1

S3D-G [60] ImNet+Kin 96.8 75.9
R(2+1)D (RGB) [61] Kinetics 96.8 74.5

STC-ResNext [59] ImageNet 96.5 74.9
DynamoNet [62] Kinetics 97.8 76.8

TS-Net [63] ImageNet 88.0 59.4
TSN [64] ImageNet 94.2 69.4

R(2+1)D (RGB+Flow) [61] Kinetics 97.3 78.7
OFF [65] none 96.0 74.2

TEINet-RGB [66] ImageNet 96.7 72.1
TEA [66] ImNet+Kin 96.9 73.3
TDN [67] ImNet+Kin 97.4 76.3

MARS [11] Kinetics 97.4 79.3
MARS+RGB [11] Kinetics 97.6 79.5
RGB+Flow (ours) Kinetics 98.1 80.7

lower difficulty than HMDB51 for action recognition, DKD
brings relatively lower accuracy increases i.e. 2% vs 6.1%. In
the action recognition task, our DKD no longer focuses on
distinguishing the teacher network and the student network,
instead, the two networks learn knowledge from each other to
form a better, mixed network. It pays attention to fusing differ-
ent source information, which refers to the motion information
of the optical flow model and the appearance information of
the RGB model here. In brief, these evaluations verify that the
exploited DKD (1) can benefit the communication of multiple
visual cues e.g. optical flow and RGB for the heterogeneous
data, (2) is effective to combine with SKD and, (3) obtains
higher improvement on the complicated dataset.

2) Comparison with the state-of-the-arts: We compare
our DKD (RGB+Flow) model, which is simply obtained by
transforming MARS [11] with using DKD to replace SKD,
to the state-of-the-art video-based action recognition meth-
ods in Table VIII. In contrast to the methods that conduct
knowledge distillation, our DKD works well. E.g., compared
with the baseline model of us i.e. MARS [11], which distills
knowledge by SKD, our DKD (RGB+Flow) model exceeds
it by 1.4% (80.7% vs 79.3%) and 0.7% (98.1% vs 97.4%)

on HMDB51 and UCF101 respectively. Compared with other
methods that without conducting knowledge distillation, the
exploited DKD also introduces superior performances. E.g.,
our DKD (RGB+Flow) model surpasses the popular R(2+1)D
(RGB+Flow) model [61] by 2.0% and 0.8% on HMDB51 and
UCF101, separately. Moreover, it outperforms the currently
TDN model [67], which also considers the temporal motion
information like our Flow model, by 4.4% and 0.7% on
HMDB51 and UCF101, respectively. The experimental results
validate the effectiveness of the proposed DKD for video-
based human action recognition.

V. CONCLUSION

We propose an novel dynamic knowledge distillation (DKD)
method for improving the traditional static knowledge distil-
lation (SKD) frameworks. In contrast to existing frameworks
which solely leverage the teacher network to guide the student
network, our DKD enables a continuous bi-directional learning
between the teacher network and the student network. We
extensively testing the performance of DKD on various visual
tasks, e.g. DKD is applied to the compressing model on
homologous data and the knowledge transfer on heterogeneous
data. As for image classification and object detection (i.e.,
evaluating on the homologous data), we show that DKD
can help to exploit informative cues of features and class
probabilities of the teacher network. As for video-based human
action recognition (i.e., evaluating on the heterogeneous data),
we combine the characteristics of RGB and optical flow
to form a knowledge cycle in DKD, which shows further
improvement over the existing methods. Significantly, we give
a mathematical analysis about the convergence and efficiency
of DKD. The remarkable experimental results demonstrate
that the proposed DKD is effective and has a wide range of
applications.
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