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Motion-Driven Visual Tempo Learning for
Video-Based Action Recognition

Yuanzhong Liu

Abstract— Action visual tempo characterizes the dynamics and
the temporal scale of an action, which is helpful to distinguish
human actions that share high similarities in visual dynamics and
appearance. Previous methods capture the visual tempo either by
sampling raw videos with multiple rates, which require a costly
multi-layer network to handle each rate, or by hierarchically
sampling backbone features, which rely heavily on high-level
features that miss fine-grained temporal dynamics. In this work,
we propose a Temporal Correlation Module (TCM), which can be
easily embedded into the current action recognition backbones
in a plug-in-and-play manner, to extract action visual tempo
from low-level backbone features at single-layer remarkably.
Specifically, our TCM contains two main components: a Multi-
scale Temporal Dynamics Module (MTDM) and a Temporal
Attention Module (TAM). MTDM applies a correlation operation
to learn pixel-wise fine-grained temporal dynamics for both fast-
tempo and slow-tempo. TAM adaptively emphasizes expressive
features and suppresses inessential ones via analyzing the global
information across various tempos. Extensive experiments con-
ducted on several action recognition benchmarks, e.g. Something-
Something V1 & V2, Kinetics-400, UCF-101, and HMDB-51, have
demonstrated that the proposed TCM is effective to promote
the performance of the existing video-based action recognition
models for a large margin. The source code is publicly released
at https://github.com/zphyix/TCM.

Index Terms— Action recognition, visual tempo, multi-scale
temporal structure, temporal correlation module.

I. INTRODUCTION

UE to the success of applying deep learning methods

on video understanding tasks, the accuracy of video
action recognition has improved significantly over the past
years [1]-[5]. However, modeling action visual tempo in
videos is often overlooked. Action visual tempo describes
how fast an action goes, which tends to determine the time
duration at the temporal scale for recognition [6]. Different
person performs the action at his/her own action visual tempo
due to various factors e.g. age, gender, strength, and mood,
etc. The complexity of action visual tempo leads to a large
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difference in the temporal dynamics and temporal scale. Fail-
ing to capture the action visual tempo in videos may hinder
to improve the accuracy of action recognition, especially in
some cases where the human actions have high similarity
in dynamics and appearance (e.g., walking, jogging, and
running), as distinguishing them heavily depend on extracting
their action visual tempo information.

Recently, a few attempts [6]-[8] have been proposed to
address this issue. SlowFast [8] samples video frames at two
different rates as input to form a two-pathway SlowFast model
for video recognition, where the slow pathway operates at
a low frame rate while the fast pathway operates at a high
frame rate. The backbone subnetworks accordingly aggregate
the fast-tempo and slow-tempo information jointly and then
handle action instances at two temporal scales. Noticeable
improvements have been obtained, but this method remains
computationally expensive to process action visual tempo
since it uses different frame sampling rates. Inspired by the
feature-level pyramid networks [9]-[11] which can deal with
large variance in spatial scales, TPN [6] constructs a temporal
pyramid by collecting backbone features from multi-layers and
aggregating them to capture the action visual tempo informa-
tion at the feature-level. TPN shows consistent improvement
on several action recognition datasets, but it extremely relies
on the temporal modeling ability of the backbone network
itself, limiting to gain the benefits from low-level features for
action recognition.

Although the high-level features contain more semantic
information, useful fine-grained temporal dynamics and tem-
poral scale information are not fully utilized in TPN. Low-level
features contain abundant fine-grained temporal dynamics and
temporal scale information, thus it is not wise to sacrifice
the modeling of low-level action visual tempo for improving
the performance. Neglecting the process of low-level features
will also result in the loss of semantic information. On the
other side, high-level features are considered to contain more
action semantic information since they have a large theoretical
receptive field formed by deep stacks of convolutional opera-
tions [12]. However, in fact, studies [13] have found that the
effective receptive field in CNN only takes a small portion of
the theoretical receptive field. Large effective receptive field
is vital for capturing long-distance dependencies [12], [14].
Consequently, to enlarge the effective receptive field, it is
necessary to perform the multi-scale process for low-level
features directly.

Motivated by the optical flow estimation methods [15]-[17]
and the motion representation-based action recognition
methods [18]-[20], which estimate fine-grained motion infor-
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The architecture of our TCM. TCM includes two main components: MTDM and TAM. In MTDM, given a single-layer backbone features as

input, we utilize a multi-scale sampling strategy to sample the longest scale and shortest scale feature pairs for each frame to capture the feature source.
A correlation is applied to both the longest scale feature pairs and the shortest scale feature pairs to form two correlation tensors respectively for slow-tempo
and fast-tempo. Then, we perform a motion estimation to extract the pixel-wise displacement maps as MTDM’s output, which will be fed into TAM. TAM
applies transformation on the pixel-wise displacement map to exploit dynamic features. After that, a cross-temporal interaction is executed to learn temporal
attention weights for useful action visual tempo features excitation. Finally, the obtained action visual tempo features are combined with the input features as
the output. C, T, H, W respectively represents the features’ channel, temporal dimension, height, and width.

mation from low-level features to facilitate video analysis,
we propose a Temporal Correlation Module (TCM) to capture
the action visual tempo from the low-level features at multi-
scale temporal dimension to promote the performance of
current video-based action recognition models [21]-[23]. As
shown in Fig. 1, TCM is composed of two parts: a Multi-
scale Temporal Dynamics Module (MTDM) which is used
for extracting both the slow-tempo and fast-tempo temporal
dynamics, and a Temporal Attention Module (TAM) which
is used for aggregating the temporal dynamics. Specifically,
in MTDM, the low-level backbone features (e.g. the output
features of layer res2 and layer res3 in the backbone shown in
Table I) will serve as the feature source to establish the shortest
and longest temporal feature pairs for each video frame. Then,
we apply the correlation operation [24] to each feature pairs
to construct a correlation tensor, which is processed by an
efficient motion estimation method [19], to extract pixel-wise
fine-grained temporal dynamics for both fast-tempo and slow-
tempo at each frame. The output of MTDM will be fed into
the downstream TAM for enhancement. TAM can adaptively
highlight discriminate features and reduce insignificant ones
by taking the interaction of temporal dynamics at different
scales into account.

Correspondingly, by equipping with the explored TCM,
a powerful neural network — TCM-Net is constructed. We inte-
grate our TCM into the low-level layer of various action
recognition backbone networks and evaluate it extensively on
the popular action recognition benchmark datasets: Kinetics-
400 [25], HMDB-51 [26], UCF-101 [27], and Something-
Something V1 & V2 [28]. The experimental results show that
the prior action recognition methods can achieve impressive
gains when combine with our TCM. As pointed in [29]-[31],
most of human actions cannot be recognized in the temporal
dominated videos without considering the temporal relation-
ship, like the human actions in the Something-Something
V1 & V2 video datasets. Specifically, when incorporating
TCM into the basic backbone ResNet50 [32] (TCM is placed

right behind layer res3, see Table I for layer reference), the
modified TCM-R50 model (with only 4% more FLOPs than
ResNet50) produces competitive result, which is on par with
the prior best performance on the Something-Something V1
& V2 datasets and the Kinetics400 dataset. Besides, a com-
prehensive ablation studies also demonstrate the effectiveness
and efficiency of the two components of TCM i.e. MTDM and
TAM.
Our main contributions are summarized as follows:

o We design a MTDM to fully extract the pixel-wise
fine-grained temporal dynamics of both fast-tempo and
slow-tempo from the low-level single-layer deep features,
which addresses the limitations of the previous methods
that heavily rely on high-level features and are unable to
exploit benefits from low-level features.

o We exploit a TAM, which can adaptively select and
enhance the most effective action visual tempo from
multi-scale temporal dynamics, to aggregate temporal
dynamics.

o« A TCM is constructed by combining MTDM with TAM,
which can incorporate with various action recognition
backbone networks easily in a plug-in-and-play way.
Extensive experiments conducted on the main 2D and
3D action recognition backbones and action recognition
benchmarks show that our TCM significantly improves
the accuracy of current video-based action recognition
models.

II. RELATED WORK
A. Action Recognition in Videos

The current convolutional deep learning methods [22], [33],
[34] dedicated to human action recognition can be roughly
divided into two categories, i.e. 3D convolutional networks
(3D CNNs) and 2D convolutional networks (2D CNNs).
3D CNNs [4], [35]-[37] utilize 3D convolutional kernels to
jointly model temporal and spatial semantics. Local temporal
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convolution operations are stacked to capture the long-range
temporal dynamics. The Non-local network [14] introduces
a non-local operation to better exploit the long-range tem-
poral dynamics from input sequences. Except the non-local
operation, there are many other modifications [18], [38], [39]
have been explored to 3D CNNSs to boost its performance,
but the variation of action visual tempo is often neglected.
2D CNNs [31], [40]-[42] apply 2D kernels over per-frame
inputs to exploit spatial semantics and followed by a module
to aggregate temporal dynamics. The most famous 2D CNN
model is the two-steam network [1], [40], [43], in which one
stream extracts the RGB appearance features, and the other
stream learns the optical flow motion information. Finally,
it uses the average pooling for spatio-temporal aggregation.
A number of efforts [19], [29], [30], [44] has been carried out
to enhance the temporal information extraction efficiency for
2D CNNs. STM [29] proposes a Channel-wise Spatiotemporal
Module and a Channel-wise Motion Module to encode the
complementary spatiotemporal and motion features in a uni-
fied 2D CNN framework. ActionS-ST-VLAD [44] propose a
novel action-stage(ActionS) emphasized spatiotemporal vector
of locally aggregated descriptors (ActionS-ST-VLAD) method
to adaptively aggregate video-level informative deep features.
TEA [30] calculates the feature-level temporal differences
from spatiotemporal features and utilizes the differences to
excite the motion-sensitive channels of the features. Motion-
Squeeze [19] presents a trainable neural module to establish
correspondence across frames and convert them into motion
features. These methods provide fine-grained modeling ability
to learn adjacent frame temporal dynamics, but they ignore
the importance of action visual tempo.

B. Action Visual Tempo Modeling in Video

Many methods [6]-[8] are dedicated to action visual
tempo [45] dynamics modeling by taking advantages of the
input-level frame pyramid. DTPN [7] samples video frames
with varied frame sampling rates and constructs a pyramidal
feature representation for arbitrary-length input videos, where
the slow-tempo and fast-tempo temporal dynamics can be
captured. Such sample strategy tends to require multiple
frames which causes a heavy computational cost, especially
when the frame sampling rate increases. SlowFast [8] uses
a two-level frame pyramid to hard-code the variance of
the action visual tempo. Branches are carefully devised to
separately process each level, and the mid-level features of
these branches are fused interactively. SlowFast can robustly
deal with the variance of the action visual tempo, but the
multi-branch network is costly. TPN [6] leverages different
depth features hierarchically formed inside the backbone net-
work to model action visual tempo. TPN can be applied
to various models and brings consistent improvement, but
it is limited by the backbone networks’ temporal modeling
ability. It cannot take advantage of the low-level features, and
the useful long-range fine-grained temporal dynamics from
distant frames in high-level features may be weakened as it
is obtained by stacking multiple local temporal convolutions.
To overcome these disadvantages, we utilize the correlation
operation to establish pixel-wise matching values for different
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temporal-scale features and exploit the action visual tempo
in videos. We also explore a temporal attention module for
interactive action visual tempo feature fusion, which not only
enhances the saliency temporal scales, but also enriches the
temporal dynamics.

III. PROPOSED METHOD

In this section, we will introduce the details of our proposed
TCM (see Fig. 1). TCM contains two important parts: a Multi-
scale Temporal Dynamics Module (MTDM) and a Temporal
Attention Module (TAM). Initially, the visual contents of
the input video are encoded into a feature sequence by a
spatio-temporal action recognition backbone network. Then,
the designed MTDM utilizes a correlation operation to extract
the temporal dynamics of both fast-tempo and slow-tempo
from this feature sequence. To determine the most effective
visual tempo information, TAM will adaptively emphasize
expressive temporal features and suppress insignificant ones
by analyzing across-temporal interactions. Lastly, the obtained
action visual tempo features are combined with the appearance
features for final prediction.

A. Multi-Scale Temporal Dynamics Module (MTDM)

The MTDM is a learnable temporal dynamics extractor,
which extracts effective temporal dynamic features of both
the fast-tempo and the slow-tempo in three steps: feature
source utilization, visual similarity computation, and motion
estimation.

1) Feature Source Utilization: The prior feature-based
methods [6] utilize the high-level backbone features to con-
struct a multi-layer feature pyramid that has increasing tem-
poral receptive fields from bottom to top. The single-layer
pyramid feature source has also been explored [6], but the
effectiveness is limited due to the constraint of the backbone’s
temporal modeling ability. In contrast, we design a novel
approach to extract the action visual tempo features of both
the slow-tempo and the fast-tempo, where they are obtained
by sampling deep features at different rates. This approach can
effectively use the single-layer deep features and be free from
the constraints of the backbone network.

Specifically, to learn features of the fast-tempo at each
frame, we present an adjacent video frames feature extraction
strategy (see Fig. 2(a)), which can effectively exploit the short-
est scale temporal information. On the other side, to capture
features of the slow-tempo for each moment, we use the
longest scale temporal information and accordingly construct
the feature extraction strategy as shown in Fig. 2(b). Combin-
ing the fast-tempo (Fig. 2(a)) with the slow-tempo (Fig. 2(b))
feature sampling strategy, our final multi-scale slow-fast-tempo
sampling strategy (Fig. 2(c)) is formed. Accordingly, for
each frame, we have its shortest and longest temporal range
information, i.e. the fast-tempo and the slow-tempo. Inspired
by the way to estimate optical flow [46], [47], we calculate
the pixel-wise visual similarity characteristics of each frame
temporally to model the action visual tempo structure.

2) Visual Similarity Computation: Let us denote the pair of
the input feature maps at a certain interval by F' € RC*XHxW

and F'*" ¢ REXH*W \where C, H and W are respectively the
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Our explored Temporal Attention Module (TAM). The displacement map (with confidence map) from MTDM are transformed by six convolution

layers to interpret slow-fast tempo semantics. Then the global average pooling (GAP) is used to capture aggregated features. With consideration of the
cross-temporal interaction, temporal weights are generated by performing a fast 1D temporal convolution with size K, where K is adaptively determined by

Eq. 8, here we show the case of K = 3.

channel dimension, height and width. The visual similarity
score at a position x with respect to the displacement p can
be defined as:

t+r
. Fx+p’

S, p, 1) = Fx ey
where - represents dot product. To improve the efficiency,
we compute the visual similarity score at the position x only
in its neighborhood with the radius R i.e. p € [—R, R]%.

Furthermore, to form the correlation tensor, we calculate the
visual similarity score of the input feature map pairs F’ and

F!*" at each position, which can be computed as following:
C(Ft Ft+r) c RHXWXRXR

Cijkl;|k—i|<R,Ji—j|<R = ZFthij CF'
h

The radius R is set manually and affects the final perfor-
mance. In practice, given a feature map with the spatial
resolution H x W (H is generally equal to W), we can set
R =INT(H/2), where INT is the integer ceiling function.
In theory, the result produced by the correlation is four-
dimension (H x W x R x R), we resize it to H x W x R? to
facilitate subsequent processing.

3) Motion Estimation: To establish the correspondence
across frame pairs, we use a light-weight method as
MotionSqueeze [19] to estimate optical flow in terms of
the correlation tensor C(F’, F'*"). Following the setting of
MotionSqueeze [19], we compute optical flow and it’s corre-
sponding confidence map for motion information extraction.
We find that the confidence map is very useful for identifying

)

motion outliers and learning informative motion features. The
two-channels’ optical flow and the one-channel’ confidence
map are concatenated to form a pixel-wise displacement map.
To maintain the temporal dimension consistency, we simply
duplicate the last temporal dimension of the displacement map.
The displacement map contains motion information of specific
scale. After performing motion estimation of the longest and
shortest scales, we concatenate them together for downstream
feature transformation of both the slow-tempo and the fast-
tempo.

B. Temporal Attention Module (TAM)

Our designed TAM aims to exploit the temporal dynamics
of the upstream input, and adaptively highlight the distinctive
features while suppressing the trivial ones by taking across-
temporal dynamics interaction into account. It is known that
the depth-wise separable convolution [48] can significantly
reduce the computational complexity of CNNs, and we use
it to improve the efficiency here. As shown in Fig. 3, the
displacement map (with the confidence map) from upstream
layers will be fed into six convolution layers for transforma-
tion. Three 1 x 3 x 3 layers are utilized to approximate a
1 x7x7 layer, then followed by another three 1 x 3 x 3 layers.
Specifically, except for the first two layers, all the other layers
are followed by a 1 x 1 convolution layer. The semantics of
the displacement map and the confidence map are expected
to be interpreted by the feature transformation. After trans-
forming the displacement map, the slow-fast visual tempo
features are obtained for aggregation. The TAM is designed to
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automatically extrude the discriminative action visual tempo
features meanwhile to reduce the impact of inessential features
during training. Recently, there are some effective attempts to
enhance the temporal information by utilizing the attention
mechanism. TEA [30] employs a global average pooling layer
to summarize the spatial information to get attentive weights
to stimulate the motion-sensitive channels. Motion pattern
has been excited and enhanced, but processing the temporal
channels in isolation can lead to the loss of cross-temporal
interaction.

Given the temporal aggregated feature F7 € RT, where T
denotes the feature temporal dimension, the temporal attention
can be learned without dimensionality reduction according to
Equation 3:

w=0c(WFT), 3)

where W is a general parameter matrix with 7' x 7 elements.
Specifically, the parameter matrix in TEA [30] is computed
according to Equation 4:

wi=| oo “)

T.T
0 vl T

where W is a diagonal matrix contains 7' parameters, but the
cross-temporal interaction is completely ignored here. Recent
research about attention mechanism [49] suggests that the
cross-channel interaction is useful, and the temporal interac-
tion has a latent important function for video analysis tasks.

We explore a novel way to capture the local cross-temporal
interaction. Same as the correlation operation, when calculat-
ing the visual similarity, we convert the global operation to
a local operation to improve the efficiency and accuracy. This
means the weight of the temporal aggregated feature F; is
calculated by only considering the temporal interaction with
its k neighbors as Eq. 5:

k
wi =0 (Y w!F), F eqf, (5)
j=1
where Qf.‘ indicates the set of k adjacent temporal features of

F;. Accordingly, a band matrix Wy is employed to learn the
temporal attention, where Wy is computed as:

Wi
wht .o Wbk 00 0
0 w2,2 w2,k+l 0 0
0 0 0 wT,T7k+1 wT,T

(6)

Notably, Wy involves only k x T parameters, which are less
than 7 x T. Besides, we make all temporal channels to share
the same learning parameters to boost the calculating speed:

k
w; = a(z w! F)), F e Qf (7
j=1
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TABLE I

THE ILLUSTRATION OF OUR USED 2D BACKBONE RESNET50. NOTE THAT
BOTH THE KERNEL SI1ZE AND THE OUTPUT SIZE ARE IN W x H

Stage Layer Output size
raw - 224 x 224
convy T X 7,64, stride 2,2 112 x 112
pooly 3 X 3 max, stride 2,2 56 X 56
1x1,64
ress 3 x 3,64 X 3 56 X 56
1x 1,256
1x1,128
ress 3 x 3,128 X 4 28 x 28
1x1,512
1x 1,256
res4 3 %X 3,256 X 6 14 x 14
1x1,1024
1x1,512
ress 3 x 3,512 X 3 TXT
1 x 1,2048
global average pool, fc 1x1

The range of the temporal interaction (i.e. the size of k) needs
to be determined carefully. Following [49], the value of k can
be decided by:

1
k=¢(T) = ;| log, (T') + bloda, (8)

where |v],qq¢ indicates the nearest odd number of v. We set
both y and b to 1 in our experiments.

Since the current frame and its adjacent frames have both
the longest and shortest scales at the same time, the current
temporal receptive field is further expanded. As a result, the
features have learned the information of both the fast-tempo
and the slow-tempo. Taking the interaction of the temporal
dynamics at different temporal scales into account, our tem-
poral attention module can better enhance the useful slow and
fast visual tempo information and suppress the unnecessary
ones.

C. Implementation

In MTDM, we first apply a 1 x 1 convolution to
reduce channels to boost the computational efficiency. The
C++/Cuda implemented version of the correlation operation
in FlowNet [24] is adopted for our correlation tensor calcu-
lation. The motion estimation method of [19] is introduced
to estimate the displacement map from the correlation tensor.
In TAM, six 1 x 3 x 3 depth-wise separable convolutions are
used to exploit fine-grained multi-scale temporal semantics.
For the temporal attention, it can be performed by a fast 1D
convolution with a kernel size k, and then we extend the
channel attention method ECA [49] to the temporal dimension.
We utilize ResNet50 [32] as the backbone, whose structure is
presented in Table L.

IV. EXPERIMENTS

We evaluate the proposed method on various action recog-
nition datasets, including Kinetics-400 [25], HMDB-51 [26],
UCF-101 [27], and Something-Something V1 & V2 [28]. The
baseline method in our experiments is 7SM [31] which uses
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ResNet50 [32] without non-local modules [14], thus it is fair
for comparison. Furthermore, we test our method on multiple
action recognition backbone networks (i.e. TSM, TEA, and
I3D), and conduct plenty of ablation studies about the com-
ponents of TCM on Something-Something V1, to analyze the
effectiveness of the proposed TCM and its two components
i.e. MTDM and TAM. It should be noted that we focus on
the gain of action recognition from the extraction of action
visual tempo patterns, and we only use RGB frames rather
than optical flow to save the computation cost.

Datasets: As mentioned in the previous work [29], the
primary public datasets for action recognition can be roughly
classified into two categories: (1) the temporal-related datasets
e.g. Something-Something V1 & V2 [28], in which the
temporal motion interaction of objects should be empha-
sized for better action understanding. (2) The scene-related
datasets e.g. Kinetics-400 [25], UCF-101 [27] and HMDB-51
[26]), in which the temporal relation is less important com-
pared to the temporal-related datasets, this is because the
background information contributes more for determining
the action label in most of the videos. The Something-
Something V1 & V2 datasets focus on human interactions
with daily life objects, thus classifying these interactions
required to pay more attention to the temporal information.
Consequently, the proposed method is mainly evaluated on
Something-Something V1 & V2 as our goal is to improve the
temporal modeling ability. Additionally, we also report experi-
mental results on the scene-related datasets Kinetics-400 [25],
HMDB-51 [26], and UCF-101 [27]. Kinetics-400 contains
400 human action categories, and provides 240k training
videos and 20k validation videos. In our experiments, due
to some videos in Kinetics-400 are unavailable, we collected
238,798 videos for training and 19,852 videos for validation.

Training: In general, we adopted the training strategy same
as TSM [31]. Our model is initialized with the ImageNet pre-
trained weights of ResNet50 (see Table I). The training settings
for the Kinetics-400, UCF-101, and HMDB-51 datasets are
also the same as TSM [31]. For the Something-Something V1
& V2 datasets, the training parameters are: the epochs are 50,
the batch size is 32, the initial learning rate is 0.01 (decays by
0.1 at epoch 30, 40 and 45), the weight decay is 5e-4, and the
dropout is 0.5. At training, for each video, we sample a clip
with 8 or 16 frames, resize them to the scale of 240 x 320,
and then crop a 224 x 224 patch from the resized images.
The scale jittering is used for data augmentation. The final
prediction follows the standard protocol of TSN [40].

Evaluation: For the Something-Something V1 & V2
datasets, two kinds of testing schemes are used: 1) single-clip
and center-crop, where only a center crop of 224 x 224 from
a single clip is utilized for evaluation; 2) 10-clip and 3-crop,
where three crops of 224 x 224 and 10 randomly-sampled clips
are employed for testing. The first testing scheme is with high
efficiency while the second one is for improving the accuracy
with a denser prediction strategy. We evaluate both the single
clip prediction and the average prediction of 10 randomly-
sampled clips. For the Kinetics-400 dataset, we evaluate
the average prediction of uniformly-sampled 10 clips from
each video. For the UCF-101 and HMDB-51 datasets, 2
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TABLE II

COMPARISON OF OUR METHOD “TSM+TCM” WITH TSM ON DIFFER-
ENT DATASETS. SPECIFICALLY, 8 FRAMES ARE INPUT FOR TRAINING.
AT TESTING, 10 VIDEO-CLIPS FOR KINETICS-400, 2 VIDEO-CLIPS
FOR HMDB-51 AND UCF-101, AND A SINGLE VIDEO CLIP FOR
SOMETHING-SOMETHING V1 & V2

Dataset Model  Top-1(%) Top-5(%) A Top-1(%)
. TSM 74.1 91.2
Kinetics-400 Ours 75.6 925 +1.5
TSM 95.9 99.7
UCF-101 Ours 972 99.8 +1.3
TSM 73.5 94.3
HMDB-51 Ours 76 96.4 +4.1
Sth-Sth TSM 47.3 76.2 47
Vi Ours 52.0 80.4 :
Sth-Sth TSM 61.7 87.4 +17
V2 Ours 63.4 88.6 '

uniformly-sampled clips from each video are selected for
evaluation.

A. Performance on CNN Baselines

TCM can be seamlessly injected into a CNN baseline
to significantly enhance its temporal information modeling
ability. To demonstrate that the enhancement is generalized
and steady, we compare our TCM with some baseline networks
on some famous action recognition benchmarks.

1) Evaluation on Different Datasets: In this experiment,
as analyzed before, we select the representative model
TSM [31] as the CNN baseline, and use the same training and
testing protocols for both the original TSM [31] and the modi-
fied model “TSM+TCM” for fair comparison. The results are
shown in Table II. In the upper part, for the datasets Kinetics-
400, UCF-101, and HMDB-51, their temporal information is
relatively less important. In contrast, in the lower part, for
the datasets Something-Something V1 & V2, the temporal
information becomes very important. When integrating our
TCM module into TSM, the performance of “TSM+TCM”
has significantly improved on both the scene dominant datasets
and the temporal dominant datasets. For example, compared
with TSM, on the large-scale dataset Kinetics-400, the Top-1
accuracy of “TSM+TCM” is improved by 1.5% (75.6% vs.
74.1%); On the relatively smaller-scale datasets UCF-101 and
HMDB-51, the Top-1 accuracy of “TSM+TCM” is boosted
respectively by 1.3% and 4.1%; On the temporal dominated
datasets Something-Something V1 & V2, the performance
improvement is more obvious, where the Top-1 accuracy is
enhanced separately by 4.7% and 1.7%. This proves that the
proposed TCM is effective to improve the temporal modeling
ability of the baseline.

2) Evaluation on Different Backbones: We apply our TCM
to a variety of backbone networks, and show their accuracy
on the Something-Something V1 dataset in Table III. There
are two parts: the upper part is 2D-CNN methods, and the
lower part is 3D-CNN methods. Particularly, in all networks,
TCM is placed right behind layer res3. For TSM over different
backbones, “TSM+TCM?” can clearly enhance the accuracy of
action recognition with only a small increase in parameters.
Compared to the baseline TSM-ResNet50, TCM obtains a
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TABLE IIT
COMPARISON BETWEEN OUR TCM AND OTHER BACKBONES ON THE SOMETHING-SOMETHING V1 DATASET

Method TCM Input FLOPs Params Sth-Sth V1
Top-1(%) Top-5(%)

X 224x224x8 143G TT3M 03 723

TSM-ResNetl8 [40] v 224 X 224 X8 164G(41.9) 115M(i00) 458(130) T48(125)
X DA x 224 X8 334G 343M 356 W)

b TSM-ResNet50 [40] v 224 x 224 x 8 353G(119) 245M(y02) 520(164) 804(16.2)
X 2 x 224 x8  63.1G 29M 63 7538

TSMResNetlOT 01 924224 %8 650G(119) 43M(j02) 526163 8l4(is0)
TEA 1] X 2 x22x8 347G 34.4M 89 781

v 224 x 224 x 8 36.6G(+1‘9) 24.6M(+0A2) 50.6(_‘_1.7) 79-7(+1.6)
X 12x112x16 332G 333M 164 53

3D-ResNet-18 [36] v 112x112x 16 334G(i02) 335Mios) 19735 48552
X 12X 112x 16 404G 362M 723 514

ap o ResNets0 [36] v 112x112x16 406G 0 464M( o2 241118 537423
X TI2x 112X 16 96G I78M 245 532

SD-ResNeXtfrom [S01 /115 112 x 16 98G(402)  482M(102) 261(416)  557(s25)

significant gain of about 6.4% (52.0% vs. 45.6%) at Top-1
accuracy at the cost of only 5.6% (35.3G vs. 33.4G) and 0.8%
(24.5M vs. 24.3M) growth in FLOPs and parameters. For the
well-performed TEA [30] which can stimulate and aggregate
the temporal information effectively, our TCM also boosts
its performance for a large margin, e.g. the Top-1 accuracy
enhances from 48.9% to 50.6%. For 3D-ResNet [36] over
different depth, TCM can steadily promote the performance,
e.g. 3D-ResNet-18 (Top-1 + 3.3%), 3D-ResNet-50 (Top-1 +
1.8% ). For the famous 3D network 3D-ResNeXt [50], our
TCM further improves its temporal modeling capability, where
the Top-1 accuracy is modified by 1.6% (24.5% vs. 26.1%).

B. Comparison With State-of-the-Arts

To evaluate the temporal modeling ability and the entire
capacity of our method, we compare our TCM-derived mod-
els with the state-of-the-arts extensively on both the tem-
poral dominated datasets Something-Something V1 & V2
and the scene dominated datasets Kinetics-400, UCF-101 and
HMDB-51. The results are reported in Table IV, Table V and
Table VI

Table IV shows the performance of 23 recent action recogni-
tion methods on the Something-Something V1 & V2 datasets.
There are three parts in this table: 3D CNN methods [51]-[54]
(in the upper part), 2D CNN methods [19], [29], [30], [40],
[41], [59], [60] (in the middle part), and the proposed TCM
based methods (in the bottom part). Without any bells and
whistles, the Top-1 accuracy of our “TSM+TCM” method i.e.
“TCM-R50” on the Something-Something V1 dataset reaches
to 52.2%, which surpasses its 2D CNN based counterparts
STM [29], TEA [30], and TANet [61] that need double
input (16 input frames) for at least 0.3%. Importantly, with
16 input frames, the accuracy of our “TSM+TCM” method
on the Something-Something V1 & V2 datasets is further
improved, where its Top-1 accuracy is higher than STM [29],
TEA [30], and TANet [61] for at least 1.2% on Something-
Something V1 and 0.9% on Something-Something V2. In
addition, compared to the 3D CNN based methods, e.g. 3D
DenseNet121 [56], the Top-1 accuracy is improved by 2.9%

(53.1% vs. 50.2%) and 2.2% (65.1% vs. 62.9%) separately
on the Something-Something V1 dataset and the Something-
Something V2 dataset. Compared to NL-I3D [52], the perfor-
mance is improved by 7.8% with using less input (8 vs. 32)
and less computation (35GFlops vs. 168GFlops x 2).

Following [19], [31], we ensemble our 8-frame and
16-frame models by averaging their prediction scores. Our
10-clip model obtains remarkable results on the Something-
Something V1 dataset. Specifically, as shown in the last row
of Table IV, its Top-1 and Top-5 accuracy outperforms the
state-of-the-art method TDN [64] by 0.4% (57.2% vs. 56.8%)
and 1.1% (85.2% vs. 84.1%), respectively. Furthermore, on the
Something-Something V2 dataset, in contrast to TDN [64],
our 10-clip model also has a better performance in the Top-5
accuracy (92.2% vs. 91.6%) and its Top-1 accuracy is just a
little bit lower (67.8% vs. 68.2%).

Table V shows the comparison with the state-of-the-art
approaches on the scene dominated dataset Kinetics-400. It can
be clearly seen that our TCM has an outstanding performance.
Firstly, our 8-frame TCM-R50 surpasses the 64-frame 13D
method [38] (Top-1 accuracy: 76.1% vs. 72.1%), and it
achieves a competitive accuracy to the 128-frame Nonlocal-
R50 approach [14] (Top-1 accuracy: 76.1% vs. 76.5%) while
its GFlops is 8 x less. Moreover, our 8-frame TCM-R50 model
performs even better than the 8-frame SlowOnly method [8]
(Top-1 accuracy: 76.1% vs. 74.8%) with 1.2x less GFlops.
All these results demonstrate that, our TCM network, is more
accurate and efficient than the non-local network to model the
temporal relationships for video classification. Secondly, our
16-frame TCM-R50 outperforms most of its 16-frame coun-
terparts, i.e. STM [29] (Top-1 accuracy: 77.4% vs. 73.7%),
TEA [30] (Top-1 accuracy: 77.4% vs. 76.1%), MSNet [19]
(Top-1 accuracy:77.4% vs. 76.4%), and TEINet [62] (Top-1
accuracy: 77.4% vs. 76.2%). With 5.1x less GFlops than the
128-frame Nonlocal-R101 method [14], our model obtains a
comparable accuracy (Topl acc: 77.4% vs. 77.7%). Thirdly,
we perform the score fusion over 8-frame TCM-R50 and
16-frame TCM-R50, which mimics the two-steam fusion
with two temporal rates. At testing, we use 10 clips and
3 crops per clip. Our TCM achieves a higher accuracy than
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TABLE IV

PERFORMANCE COMPARISON WITH STATE-OF-THE-ARTS ON THE SOMETHING-SOMETHING V1 & V2 DATASETS. MOST OF THE RESULTS ARE COPIED
FROM THE CORRESPONDING PAPER, AND THE SYMBOL “-” DENOTES THE RESULT IS NOT GIVEN

Method Frame | FLOPs X clips | Params Sth-Sth V1 Sth-Sth V2
Top-1(%) | Top-5(%) | Top-1(%) | Top-5(%)
ECOpg, Lite [51] 92 267 x 1 150M 46.4 - - -
I3D from [52] 32 153G x 2 28.0M 41.6 72.2 - -
NL-I3D from [52] 32 168G x 2 35.3M 444 76.0 - -
NL-I3D + GCN [52] 32 303G x 2 62.2M 46.1 76.8 - -
S3D-G [53] 64 71G x 1 11.6M 48.2 78.7 - -
DFB-Net [54] 16 N/A x 1 - 50.1 79.5 - -
CorrNet-101 [55] 32 224G x 30 - 51.7 - - -
3D DenseNet121 [56] 16 31G x 1 21.4M 50.2 78.9 62.9 88.0
CIDC(I3D) [57] 32 92G x 30 8™ - - 56.3 83.7
RubiksNet [58] 8 33G x 1 - 46.4 74.5 58.8 85.6
TSN [40] 8 16G x 1 10.7M 19.5 - 334 -
TRN [41] 8 16G x N/A 18.3M 34.4 - 48.8 -
MFNet [59] 10 N/A x 10 - 439 73.1 - -
CPNet [60] 24 N/A x 96 - - - 57.7 84.0
STM [29] 16 67G x 30 24.0M 50.7 80.4 64.2 89.8
TSM [31] 16+8 98G x 1 48.6M 49.7 78.5 62.9 88.1
TEA [30] 16 70G x 1 24.5M 51.9 80.3 - -
TANet [61] 16+8 99G x 1 25.6M 50.6 79.3 - -
MSNet [19] 16+8 101G x 10 49.2M 55.1 84.0 67.1 91.0
CIDC(R2D) [57] 32 72G x 30 85M - - 40.2 68.6
TEINet [62] 16+8 99G x 1 30.4M 52.5 - 65.5 89.8
ACTION-Net [63] 16 69.5G x 1 28.1M - - 64.0 89.3
TDN [64] 16+8 198G x 1 - 56.8 84.1 68.2 91.6
TCM-R50 8 35G x 1 24.5M 522 80.4 63.5 88.7
TCM-R50 16 70G x 1 24.5M 53.1 81.2 65.1 89.6
TCM-R50g,, 16+8 105G x 1 49.0M 54.7 82.6 66.7 90.7
TCM-R50g, 16+8 105G x 10 49.0M 57.2 85.2 67.8 92.2
TABLE V

PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ARTS ON THE KINETICS-400 DATASET. THE SYMBOL “N/A” DENOTES
THE RESULT THAT IS NOT GIVEN

Method Pretrain Frame | FLOPs X Views Kinetics-400
Top-1(%) | Top-5(%)

ECO [51] Scratch 92 N/A x N/A 70.0 89.4
13D [38] Scratch 64 108G x N/A 72.1 90.3
Two-Stream 13D [38] Scratch 64 216G x N/A 75.7 92.0
R(2+1)D [39] Sports-1M 32 152G x 10 74.3 91.4
ARTNet [65] Scratch 16 23.5G x 250 69.2 88.3
S3D-G [53] ImageNet 64 66.4G x N/A 77.2 93.0
Nonlocal-R50 [14] ImageNet 128 282G x 30 76.5 92.6
Nonlocal-R101 [14] ImageNet 128 359G x 30 77.7 93.3
ip-CSN [66] ImageNet 32 83G x 30 76.7 92.3
CIDC(I3D) [57] ImageNet 32 92G x 30 74.5 91.3
TPN [6] Scratch 32 N/A 78.9 93.9
SmallBigNet [67] Scratch 32 418G x 12 77.4 93.3
CorrNet [55] Scratch 32 224G x 30 79.2 N/A
SlowOnly [8] Scratch 8 419G x 30 74.8 91.6
SlowFast [8] Scratch 8+32 106G x 30 77.9 93.2
SlowFast [8] Scratch 16+64 234G x 30 79.8 93.9
X3D [4] Scratch 16 48.4G x 30 79.1 93.9
TSN [40] ImageNet 25 3.2G x 10 72.5 90.5
TSM [31] ImageNet 16 65G x 30 74.7 91.4
STM [29] ImageNet 16 67G x 30 73.7 91.6
TEA [30] ImageNet 16 70G x 30 76.1 92.5
MSNet [19] ImageNet 16 67G x 30 76.4 N/A
CIDC(R2D) [57] ImageNet 32 72G x 30 72.2 90.1
TEINet [62] ImageNet 16 66G x 30 76.2 92.5
TANet-152 [61] ImageNet 16 242G x 12 79.3 94.1
TDN [64] ImageNet 16+8 198G x 30 79.4 94.4
TCM-R50 ImageNet 8 35G x 30 76.1 92.3
TCM-R50 ImageNet 16 70G x 30 77.4 93.1
TCM-R50 g, ImageNet 16+8 105G x 30 78.5 93.8

the “8+32-frame” SlowFast model [8], with using less input reveals that, spatio-temporal learning of our TCM is more
frames and a little bit less GFlops (105 vs. 106). Table V  effective than temporal shift of TSM.
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TABLE VI

COMPARISON WITH THE STATE-OF-THE-ARTS ON THE UCF-101 AND
HMDB-51 DATASETS. THE SYMBOL “-” DENOTES THE RESULT THAT
Is NOT GIVEN

Method Pretrain Backbone UCF-101 | HMDB-51
TSN [40] ImageNet | Inception V2 | 86.4% 53.7%
P3D [68] ImageNet ResNet50 88.6% —
C3D [35] Sports-1M ResNet18 85.8% 54.9%
13D [38] Kinetics | Inception V2 | 95.6% 74.8%
ARTNet [65] Kinetics ResNet18 94.3% 70.9%
S3D [53] Kinetics | Inception V2 | 96.8% 75.9%
R(2+1)D [39] Kinetics ResNet34 96.8% 74.5%
TSM [31] Kinetics ResNet50 96.0% 73.2%
STM [29] Kinetics ResNet50 96.2% 72.2%
TEA [30] Kinetics ResNet50 96.9% 73.3%
TDN [64] Kinetics ResNet50 97.4% 76.3%
TCM-R50 (ours) | Kinetics ResNet50 97.1% 77.5%

To further verify the generalization ability of the explored
TCM, we transfer the trained 16-frame TCM-R50 model
from the Kinetics-400 dataset to the UCF-101 and HMDB-51
datasets same as the previous works [30], [31], [64]. We fol-
low the standard evaluation metric on the two datasets and
report the average Top-1 accuracy over the three splits, where
the results are summarized in Table VI. We compare our
TCM with the advanced methods such as the 2D baseline
TSM [31], the 3D CNN based methods 13D [38], C3D [35],
and R(2+1)D [39], and the other temporal modeling meth-
ods [29], [30], [64]. From the results, we can see that our
TCM is superior to these methods, and the performance
improvement is more obvious on the HMDBS51 dataset which
is boosted by at leat 1.2% (Top-1 accuracy: 77.5% vs. 76.3%).
The human actions in HMDBS51 are more relevant with motion
information, therefore temporal modeling is more important on
this dataset. On the other side, on the UCF-101 dataset, our
TCM-R50 also achieves competitive result to the first place
(Top-1 accuracy: 97.1% vs. 97.4%).

C. Comparison With TPN

To make a fair comparison, we compare the performance of
our TCM and TPN [6] on the Something-Something V1 & V2
datasets, using the same backbone (TSM-R50 [31]) and same
experiment settings. Results in Table VII demonstrate that
TCM is superior to TPN: 1) Higher accuracy, where it
outperforms TPN on the Something-Something V1 dataset
by 3.2% and the Something-Something V2 dataset by 1.5%;
2) Fewer parameters, where its parameters is less than 30% of
TPN (TCM vs. TPN: 24.5M vs. 82.5M). 3) Less computation,
where it takes only about 85% Flops of TPN ( TCM vs. TPN:
35.3G vs. 41.5G). The efficiency of TPN is not satisfactory
may due to the use of 3D convolution. TCM is more efficient
since it is based on 2D convolution.

D. Ablation Study

Ablation studies about the components of our TCM are
conducted on the Something-Something V1 dataset. Partic-
ularly, the ResNet-18 with the temporal shift module [31] is
served as the backbone here. Following the setting of [31],
8 input frames, which are sampled from the video via the
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TABLE VII

PERFORMANCE COMPARISON WITH TPN ON THE
SOMETHING-SOMETHING V1 & V2 DATASETS. SPECIFICALLY,
8 FRAMES ARE INPUT FOR TRAINING. SINGLE-CLIP AND
CENTER-CROP TESTING SCHEME Is USED HERE

Method FLOPs | Params | Topl@V1 | Topl @V2

TSM-R50 [31] 334G | 24.3M 45.6 59.1

TSM+TPN [6] 41.5G | 82.5M 49.0 62.0

TSM+TCM(ours) | 353G | 24.5M 52.2 63.5
TABLE VIII

PERFORMANCE COMPARISON WITH DIFFERENT FEATURE SOURCES. TCM
Is PLACED RIGHT BEHIND THE SPECIFIED LAYER

Layer GFLOPs | Top-1(%) | Top-5(%)
baseline 14.5 42.8 72.3
res2 17.5 429 72.6
res3 16.4 45.9 75.7
resd 15.1 43.8 73.1
resS 14.7 43.6 72.8
res{2,3} 19.4 45.8 75.6
res{2,3,4} 20.0 45.8 75.5
res{2,3,4,5} 20.2 45.6 75.4

segment-based sampling method [40], are utilized for training
and inference. The training parameters are: the training epochs
are 40, the batch size is 64, the initial learning rate is 0.02
(decays by 0.1 at epoch 20 & 30), the weight decay is Se-4,
and the dropout is 0.5.

1) Which Feature Source Is Most Suitable for Build-
ing a Multi-Scale Temporal Motion Pyramid?: Extensive
experiments on feature sources are tested, results shown in
Table VIII verify that the proposed TCM overcomes the
previous approach’s inability to explore benefits from rela-
tively shallow sources, e.g. res2 or res3. Even for high-level
feature sources, significant improvement is gained. Enjoying
the flexibility to plug-and-play in a single-layer, the multi-layer
style can also be performed by using multiple TCM modules
simultaneously. Its performance is slightly improved compared
to the baseline but is degraded in contrast to the usage of a
single TCM. This is because stacking multiple TCM modules
damages the brightness consistency of the prior TCM layer.
Since res2 is too shallow to extract enough spatial features, the
accuracy increases the most when TCM is placed right after
the res3 layer. As a result, we select to use a single TCM right
behind layer res3 finally.

2) How Important of MTDM and TAM?: MTDM is used
for multi-scale temporal dynamics extraction and TAM is
used for temporal scales aggregation. The effect of these
modules is studied in Table IX. From which we can observe:
both MTDM and TAM can enhance the accuracy of action
recognition largely, and the action recognition performance is
further boosted when combining MTDM with TAM.

3) What Is the Difference With the Existing Motion Cue
Learning Method?: As far as we known, the existing motion
cue learning methods [18], [19], [29], [55], [69] mainly aimed
at extracting the feature-level motion patterns between adja-
cent frames. TVNet [69] and Rep-Flow [18], [69] internalize
the TV-L1 optical flow in their networks, which enabling to
capture the motion information and appearance information in
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TABLE IX
PERFORMANCE COMPARISON WITH DIFFERENT TCM COMPONENTS

MIDM TAM Top-1(%) | A Top-1(%)
42.6 baseline
v 43.8 +1.2
v 43.2 +0.5
v v 45.9 +3.3
TABLE X

PERFORMANCE COMPARISON WITH THE EXISTING MOTION CUE
LEARNING METHODS ON THE KINETICS-400 DATASET. THE
SYMBOL “-” DENOTES THE RESULT THAT IS NOT GIVEN

Method Frame GFLOPs x Clips FPS  Top-1(%)
TVNet [69] 18 N/A x 250 - 68.51
Rep-flow [18] 32 1522x 25 2.0 75.5
STM [29] 16 67x 30 - 73.7
TEA [30] 16 70 1 - 74.0
CorrNet-50 [55] 32 115 x 10 - 71.2
MSNet [19] 16 67 x 10 31.2 76.4
TCM(ours) 16 70x 10 28.1 77.2

I represents that the results of the method are reproduced by us
according to the source code they supplied.

TABLE XI

PERFORMANCE COMPARISON WITH THE PLUG-IN-AND-PLAY MODULES
ON THE SOMETHING-SOMETHING V2 DATASET (TSM-R50 Is USED
AS A BASELINE). ALL METHODS USE RESNET50 PRE-TRAINED
ON IMAGENET AS THE BACKBONE AND 8-FRAME INPUT FOR
FAIR COMPARISON. THE LEAST PARAM. AND THE BEST
RESULT ARE HIGHLIGHTED AS BOLD. THE SYMBOL “-”
DENOTES THE RESULT THAT Is NOT GIVEN

Method GFLOPs  Param. Sth-Sth V2
Top-1(%) Top-5(%)

baseline(TSM-R50 [31]) 32.8 24.3M 58.8 854
Nonlocal TSM-R50 [31] 49.3 31.2M 60.1 86.7
TEINet [62] 33 30.4M 61.3 -

MSNet [19] 34.3 24.6M 63.0 88.4
ACTION-Net [63] 34.7 28.1M 62.5 87.3
TCM-R50(ours) 353 24.5M 63.5 88.7

an end-to-end way. STM [29], TEA [30], and CorrNet [55]
propose approaches to establish frame-to-frame matches over
convolutional feature maps, and well-designed blocks for
learning better temporal information are applied to replace the
original residual blocks in the ResNet architecture to construct
a simple yet effective network. MSNet [19] presents a trainable
module named MotionSqueeze to substitute the external and
heavy computational optical flow with the internal and light-
weight learned motion features. These works have promoted
video understanding, but the extraction of action visual tempo
from video sequence features has been rarely accounted. Our
work aims to fill this gap, where the video sequence features
are exploited to capture the movement patterns on different
temporal scales, and the useful visual tempo information is
enhanced adaptively. We compared our method with these
motion cue learning methods on the Kinetics-400 dataset in
Table X, it reveals that our method is superior to these methods
due to it concerns multi-scale fine-grained temporal dynamics
of both the fast-tempo and the slow-tempo.

4) Compared With Plug-in-and-Play Modules: We make
a comprehensive comparison with methods [19], [31], [62],
[63], which enjoy a plug-and-play manner likes our TCM,
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on the Something-Something V2 dataset, the results are shown
in Table XI. The TSM-R50 [31] method is served as the
baseline here for performance and efficiency comparison.
For the Nonlocal TSM-R50 method [31], we retrained the
model on the Something-Something V2 dataset via the official
PyTorch code base [31]. Compared to Nonlocal TSM-R50,
our TCM-R50 uses only 0.7x GFLops and 0.8 x vParam., and
achieves much better performance (Topl accuracy: 63.5% vs.
60.1%, TopS accuracy: 88.7% vs. 85.4%). Probably because
the non-local module focuses on capturing global depen-
dencies, in contrast, our approach pays close attention to
extract the most appropriate dependencies. In the spatial
dimension, pixel-wise optical-flow-like motion information
is obtained by an optimized MotionSqueeze [19] algorithm.
In the temporal dimension, for the first time, we sample the
learned features with different ratios, and carry out an efficient
temporal attention consideration that involves cross-temporal
interaction. Compared to other well-designed approaches, our
TCM-R50 utilizes the fewest parameters and gets the highest
performance improvement.

E. Visualization

To further explore the working mechanism of our TCM,
we visualize the class activation maps with Grad-CAM
[70]-[72]. Fig. 4 shows the feature visualizations that are
characterized by TSN [40], TSM [31] and our TCM for
the action “Moving something and something so they pass
each other” on the Something-Something V1 dataset. In our
visualization, we take 8 frames from the moment TO to the
moment T7 as input, and plot the activation maps for each
frame. From the results, it can be found that 1) TSN only
pays attention to objects and fails to capture the movement
of objects and human hands; 2) TSM can capture the coarse
motion information, but it is unable to accurately locate the
action-relevant regions; 3) Our TCM is superior to the TSM
baseline in focusing on the action-relevant regions, due to the
long-term and short-term temporal modeling capacity of the
proposed TCM.

F. Empirical Analysis

To study the robustness of TCM to action visual tempo
variation, we follow [6] to evaluate the accuracy drop by
re-sampling the input frames with different temporal inter-
vals. We first train TSM-ResNetl8 and TCM-ResNetl8 on
the Something-Something V1 dataset with 4 x 4 (frames x
interval) inputs, then we re-scale the original 4 x 4 input by re-
sampling the frames with the stride 7 equals to {2,3,4,5,6,7,8}
respectively, accordingly the temporal scales of a given action
instance are adjusted. For some videos with insufficient num-
ber of frames, we copy the last frame until the number of the
input frames is reached. Fig. 5 shows the accuracy curves of
varying the action temporal scales for TSM-ResNet18 and our
TCM-ResNet18. Clearly, our TCM improves the robustness of
the baseline, and gets a smoother curve (see the orange curve
on the top), which strongly supports the conclusion that our
TCM can effectively extract and fuse the action visual tempo
features.
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Fig. 4. Visualization of activation maps with Grad-CAM [72] for the deep features of the action “Moving something and something so they pass each other”,
where the deep features are extracted by TSN, TSM and our TCM methods, respectively. All methods use 8-frame input to visualize on the Something-
Something V1 dataset. In the first row, we plot the 8 RGB raw frames, then we plot the activation maps of TSN, TSM and our TCM. We use red bounding
box to highlight the regions that need to be focused on in the activation maps. Compared to TSN and TSM, it can be noticed that TCM is able to learn the
deep features related to human interaction with objects i.e. the red bounding boxes at moment T3-T6 frames. Particularly, in contrast to TSM, we can find
that the exploited TCM has the following advantages: 1) locating the area where the cup and bottle pass through each other more accurate (i.e. frames at
moment T3), 2) depicting the interaction of the hand and cup more precise (i.e. frames at moment T4), 3) considering the connection between the cup and

the bottle (i.e. frames at moment T5 and T6).
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Fig. 5. Robustness to the variance of action visual tempo. The orange line

depicts the accuracy change of the baseline network with incorporating our
TCM, while the blue line denotes the accuracy change of the baseline without
integrating our TCM.

V. CONCLUSION
We propose a novel Temporal Correlation Module (TCM) to
deal with the variation of action visual tempo in videos, which
includes a Multi-scale Temporal Dynamics Module (MTDM)

and a Temporal Attention Module (TAM). MTDM extracts
pixel-wise fine-grained temporal dynamics for both the fast-
tempo and the slow-tempo by utilizing a correlation operation.
TAM adaptively selects and enhances the most effective action
visual tempo information by taking across-temporal dynamics
interaction into account. The explored TCM can be seamless
integrated into the current action recognition backbones and
optimized in an end-to-end way to capture the action visual
tempo commendably. It is especially effective when incorpo-
rating it to the low-level layer of the backbone. Extensive
experiments on 5 representative datasets have demonstrated
the effectiveness of TCM in both accuracy and efficiency.
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