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Abstract
Knowledge distillation is widely adopted in seman-
tic segmentation to reduce the computation cost.
The previous knowledge distillation methods for
semantic segmentation focus on pixel-wise feature
alignment and intra-class feature variation distilla-
tion, neglecting to transfer the knowledge of the
inter-class distance in the feature space, which is
important for semantic segmentation. To address
this issue, we propose an Inter-class Distance Dis-
tillation (IDD) method to transfer the inter-class
distance in the feature space from the teacher net-
work to the student network. Furthermore, se-
mantic segmentation is a position-dependent task,
thus we exploit a position information distillation
module to help the student network encode more
position information. Extensive experiments on
three popular datasets: Cityscapes, Pascal VOC
and ADE20K show that our method is helpful
to improve the accuracy of semantic segmenta-
tion models and achieves the state-of-the-art per-
formance. E.g. it boosts the benchmark model
(“PSPNet+ResNet18”) by 7.50% in accuracy on
the Cityscapes dataset.

1 Introduction
Semantic segmentation aims at allocating a label for each
pixel of the input image. It is a basic and challenging task
in computer vision, which has widely applied in many fields,
e.g. autonomous driving [Dong et al., 2020], ground feature
changing detection [Kemker et al., 2018], etc. Recently, due
to the success of deep learning [Tu et al., 2019] in computer
vision, Convolutional Neural Networks (CNNs) based meth-
ods have greatly improved the accuracy of semantic segmen-
tation. However, CNN based semantic segmentation algo-
rithms usually have an expensive computational cost, which
limits their application in practice, especially for the real-life
tasks that demand high efficiency.

To address this issue, many lightweight models have been
explored, e.g. ENet [Paszke et al., 2016], ESPNet [Mehta
et al., 2018], ICNet [Zhao et al., 2018], and STDC [Fan et

∗Corresponding author: Zhigang Tu

Large

Inter-Class

Distance

Small 

Inter-Class

Distance

Class-wise tokens

Distance

Teacher

Network

Student

Network

Feature
Space

Feature

Space

Mimic

Output

Output

Input

Image

Figure 1: Limited by simple network structure and few parameters,
the student network cannot have large inter-class distance like the
teacher network in the feature space. Our motivation is to transfer
the inter-class distance of the teacher network to help student net-
work improve the segmentation accuracy.

al., 2021]. Although researchers have designed excellent net-
works to reduce the cost of computation, it is difficult to reach
a satisfactory compromise between accuracy and model size.
Instead of redesigning the backbone, we adopt the knowledge
distillation (KD) strategy to train a student network by the
guidance of a teacher network, and obtain comparable result.

KD [Hinton et al., 2015], as a model compression method,
is originally used in the image classification task, which is
able to simplify the cumbersome model significantly. Due
to the advantage of KD, some semantic segmentation ap-
proaches use KD to reduce the model size [Liu et al., 2019;
Wang et al., 2020; Shu et al., 2021]. They force the stu-
dent model to learn the pixel-wise feature and intra-class fea-
ture variation from the teacher network. Representatively,
Intra-Class Feature Variance Distillation (IFVD) [Wang et
al., 2020] focuses on transferring the variation of the intra-
class feature from the teacher network to the student network.
Channel-wise Knowledge Distillation (CD) [Shu et al., 2021]
emphasizes on distilling the most significant areas in each
channel. It is worth noting that semantic segmentation is a
pixel-wise category prediction task with various categories,
thus the inter-class distance in the feature space is ubiqui-
tous in semantic segmentation. Due to the help of numerous



parameters and complex network structure, the teacher net-
work has stronger classification ability and large inter-class
distance in the feature space. However, Issue 1: the past
KD schemes for semantic segmentation neglect to transfer the
inter-class distance in the feature space of the teacher network
to the student network.

Moreover, CNNs are able to encode the position informa-
tion implicitly [Islam et al., 2020]. Semantic segmentation
is a position-dependent task. Generally, with the simple net-
work structure and a few parameters, Issue 2: the student net-
work is unable to encode as rich position information as the
teacher network.

To address the above mentioned issues, we consider to
distill the inter-class distance in the feature space and posi-
tion information from the teacher network to the student net-
work. Accordingly, we propose a novel method (see Figure
1) called Inter-class Distance Distillation (IDD). It consists
of two main components. One is the inter-class distance dis-
tillation module (IDDM), we design a graph to encode the
inter-class distance, and make the student network mimic the
large inter-class distance of the teacher network. The other
is the position information distillation module (PIDM). We
design a position information network to extract the position
information implicitly encoded in the feature map. Both the
teacher network and the student network will predict the ab-
solute coordinate mask via this network. By minimizing the
divergence of them, the student network can encode more po-
sition information. With our IDD method, the student net-
work learns more knowledge about inter-class distance and
position information, improving the segmentation accuracy
of the student network significantly.

The contributions are summarized in three-fold:

• We propose a novel approach named Inter-class Dis-
tance Distillation (IDD) for semantic segmentation. It is
the first method to distill the inter-class distance among
all KD schemes for semantic segmentation to the best of
our knowledge.

• We design a position information distillation module
(PIDM) to enhance the capability of the student network
encoding position information.

• We demonstrate the effectiveness of the IDD method on
three famous benchmark datasets, which not only ob-
tains the state-of-the-art accuracy among KD schemes
for semantic segmentation, but also is useful for other
semantic segmentation models.

2 Related Work
Semantic segmentation. CNN based models have greatly
promoted the progress of semantic segmentation. Many re-
searchers have tried different methods to make the model to
learn rich contextual information. [Zhao et al., 2017] pro-
posed a pyramid pooling strategy to collect context informa-
tion from multiple scales. DeepLabv2 [Chen et al., 2017]
adopted the atrous spatial pyramid pooling approach to get
abundant context information. An encoder-decoder module
was designed to capture multilevel features and contextual
information. OCNet [Yuan et al., 2018] exploited a self-

attention mechanism to capture relationships between all pix-
els. To meet the real-time semantic segmentation require-
ment of the mobile platform, some lightweight networks were
proposed. ENet [Paszke et al., 2016] used an asymmetric
encoder-decoder structure and a convolution kernel decom-
position operation, which greatly reduce the number of pa-
rameters and the floating point operations. Point-wise con-
volutions and spatial pyramid of dilated convolutions were
applied in ESPNet [Mehta et al., 2018] to decrease the cost
of computation. ICNet [Zhao et al., 2018] achieved fast se-
mantic segmentation by designing an efficient network struc-
ture to process images with different resolutions. [Fan et al.,
2021] designed a new real-time segmentation architecture by
reducing network redundancy. Different from [Mehta et al.,
2018; Zhao et al., 2018], we get the lightweight semantic seg-
mentation network with the usage of KD, which avoids to re-
design the network structure, and gains high efficiency.
KD for semantic segmentation. [Hinton et al., 2015] pro-
posed the concept of KD, it is a process of transferring the
soft-labels from the teacher network to the student network
to improve the performance of the student network. Because
of the remarkable performance of KD, some researchers ap-
plied KD to semantic segmentation. [Liu et al., 2019] used
a structured KD approach to transfer pixel-wise, pair-wise,
and holistic knowledge from the teacher network. [He et al.,
2019] designed an autoencoder to transform knowledge into a
compact form which is easier for the student network to learn.
[Wang et al., 2020] presented an intra-class feature variation
distillation scheme to make the student network simulate the
intra-class feature distribution of the teacher network. [Shu et
al., 2021] exploited a simple yet effective approach to mini-
mize the channel-wise discrepancy between the teacher net-
work and the student network. Unlike these mentioned ap-
proaches, our method pays attention to distilling the inter-
class distance in the feature space, which is complementary to
the previous distillation of pixel-wise feature alignment and
intra-class feature variation.

3 Proposed Method
In this section, we first give an overview the general frame-
work of past KD methods for semantic segmentation and our
IDD model, then we describe the IDDM and PIDM in detail.

3.1 Overview
Semantic segmentation is a dense prediction task, aiming
to assign a label to each pixel. Though the previous KD
based semantic segmentation methods have achieved good
progress, they mainly focus on aligning the pixel-wise fea-
ture and intra-class feature variance. Their loss function can
be generally formulated as:

Loss = Ltar(D(GT), D(FS)) + λ · Ldis(φ(F
T ), φ(FS)),

Ltar(D(GT), D(FS)) = −
N∑

k=1

D(GTk) · log(D(FS
k )).

(1)

Ltar is the cross-entropy loss, GT is the ground-truth, FS

and FT denote the feature map of the student network and
the teacher network, respectively. φ(·) represents a mapping
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Figure 2: The network of our IDD method for semantic segmentation. We design a graph to encode the inter-class distance in the teacher
network and transfer the inter-class distance to the student network. Besides, we transfer rich position information which is implicitly encoded
in the teacher network to the student network.

function. D(GT) and D(FS) separately denote the ground-
truth and the student network’s category probability distribu-
tions of all pixels. N is the number of pixels, D(GTk) de-
notes the kth pixel’s ground-truth category probability distri-
bution, D(FS

k ) is the kth pixel’s category probability distribu-
tion produced by the student network. λ is a hyper-parameter
to control the weight of loss. Ldis(·) is a loss function, such as
the mean-squared error loss. Obviously, the prior methods ig-
nore to transfer inter-class distance in the teacher network to
the student network. Therefore, as illustrated in Figure 2, we
propose the IDD method to transfer the inter-class distance
and position information from the teacher to the student. We
detail each module in the following subsections.

3.2 Inter-Class Distance Distillation Module
Semantic segmentation is a pixel-wise classification task.
Limited by simple network structure and few parameters, the
student network has relatively poor discriminating ability and
small inter-class distance. We propose the inter-class distance
distillation module to deal with this challenge.

As illustrated in Figure 2, we construct a graph G =
{V, E} to encode the inter-class category distance, where
V = {vi | i = 1, ..., N} is a group of nodes, N denotes the to-
tal number of segmentation categories of the processed image
and E = {ei,j | i = 1, ...N ; j = 1, ...N ; i ̸= j} represents a
group of edges. vi denotes the token of the ith class, vi is
obtained by averaging the feature of all pixels with the same
category label i. ei,j is the Euclidean distance between the
class-wise tokens of the ith and the jth category, which is
defined as:

ei,j = Dis(vi, vj). (2)

It represents the feature distance between the ith class and the
jth class, and Dis is the Euclidean distance. Due to the deep
network and numerous parameters, the teacher network have

large inter-class distance. Inspired by this characteristic, to
enable the student network to better simulate the teacher net-
work in terms of the inter-class distance, we design an inter-
class distance loss function Lid, which is defined as:

Lid =
1

2

N∑
i=1

N∑
j=1

(
eTi,j − eSi,j

)2
, i ̸= j, (3)

where eTi,j and eSi,j stand for the ei,j in the teacher network
and the student network, respectively.

3.3 Position Information Distillation Module
Semantic segmentation is a position-dependent task. It is re-
ported in [Islam et al., 2020] that CNNs have the ability to
encode position information. Inspired by [Islam et al., 2020],
we further introduce a position information distillation mod-
ule to enhance the capability of the student network predict-
ing position information. As a result, the student network can
encode more position information in its output features which
could be utilized to improve segmentation accuracy.

Specifically, we use A ∈ RC×H×W to represent the in-
put feature map. First, we input A into a pretrained position
information network to get the position information masks
PHOR ∈ RH×W and PV ER ∈ RH×W , which represent the
abscissa and ordinate respectively. In PHOR, each column
has the same value, and we use VHOR

j (j ∈ [1, H]) to rep-
resent the value of column j, where VHOR

j = j. In PV ER,
each row has the same value, and we use VV ER

i (i ∈ [1,W ])
to denote the value of row i, where VV ER

i = i.
We construct a loss function Lpi to transfer the position

information of the teacher network to the student network, it
is expressed as:

Lpi =
1

2
· LHOR

pi +
1

2
· LV ER

pi , (4)



Backbone Lskd Lcw Lid Lpi mIoU (%)

T: ResNet101 78.56
S: ResNet18 70.09
S: ResNet18 ✓ 73.03
S: ResNet18 ✓ ✓ 75.78
S: ResNet18 ✓ ✓ ✓ 76.81
S: ResNet18 ✓ ✓ ✓ 76.43
S: ResNet18 ✓ ✓ ✓ ✓ 77.59

Table 1: Ablative studies of our loss items: Lskd, Lcw, Lid, and
Lpi on the Cityscapes validation dataset. “T: ResNet101” and
“S: ResNet18” in the column of “Backbone” mean that we select
ResNet101 and ResNet18 with PSPNet as the backbone for the
teacher network and the student network, respectively.

Method mIoU (%) Params (M) FLOPs (G)

ENet 58.3 0.358 3.612
ESPNet 60.3 0.364 4.422
ERFNet 68.0 2.067 25.60
ICNet 69.5 26.50 28.30
FCN 62.7 134.5 333.9
RefineNet 73.6 118.1 525.7
OCNet 80.1 62.58 548.5
T: PSPNet-R101 78.4 70.43 574.9

S: PSPNet-R18 67.60 13.07 125.8
S: +Ours (IDD) 76.33 13.07 125.8

Table 2: Comparison the performance of different lightweight se-
mantic segmentation models on the Cityscapes testing set.

where

LHOR
pi =

H∑
j=1

∥∥∥∥∥ QHOR T
j∥∥QHOR T
j

∥∥
2

−
QHOR S

j∥∥QHOR S
j

∥∥
2

∥∥∥∥∥
2

,

LV ER
pi =

W∑
i=1

∥∥∥∥∥ QV ER T
i∥∥QV ER T
i

∥∥
2

− QHOR S
i∥∥QHOR S
i

∥∥
2

∥∥∥∥∥
2

(5)

represent Lpi in the horizontal and the vertical directions, re-
spectively. QV ER T

j and QV ER S
j denote the column j of

PV ER produced by the teacher network and the student net-
work in the vectorized form. Analogically, QHOR T

i and
QHOR S

i denote the row i of PHOR produced by the teacher
network and the student network in the vectorized form.

3.4 Loss Function
Following [Shu et al., 2021], we also apply the channel-wise
supervision Lcw to minimize the Kullback–Leibler (KL) di-
vergence of the channel-wise probability map between the
teacher network and the student network. The final loss func-
tion of our IDD method is formulated as:

L = Lskd + λ1 · Lcw + λ2 · Lid + λ3 · Lpi, (6)

where Lskd is a structured KD loss for semantic segmenta-
tion [Liu et al., 2019], λ1, λ2 and λ3 are the hyper parameters
to balance the weight between different items.

4 Experiments
To verify the effectiveness of our proposed IDD based se-
mantic segmentation method, we conduct comprehensive ex-
periments on three popular benchmarks: Cityscapes [Cordts
et al., 2016], Pascal VOC [Everingham et al., 2015], and
ADE20K [Zhou et al., 2017]. In the next subsections, we
first introduce the datasets, evaluation metrics and implemen-
tation details. Next, we perform ablation experiments on
the Cityscapes dataset. Finally, we compare our model with
the state-of-the-art lightweight models on Cityscapes, Pascal
VOC, and ADE20K.

4.1 Datasets and Evaluation Metrics
Datasets. Cityscapes includes 5000 finely annotated im-
ages of driving scenes in cities. It consists of 2975, 500 and
1525 images for training, validation and testing, respectively.
It is labeled with 19 semantic categories. The resolution of
each image is 2048×1024. In our experiments, we do not use
the coarsely labeled images. Pascal VOC composes of 1464
images for training, 1449 images for validation and 1456 im-
ages for testing. It covers 20 foreground object classes and
1 background class. ADE20k is a challenging scene parsing
dataset released by MIT, which contains 20K, 2K, 3K images
with 150 classes for training, validation, and testing.
Evaluation metrics. We use the Intersection-over-Union
(IoU) of each class and the mean IoU (mIoU) of all classes
to measure the segmentation accuracy.The total number of
model parameters (Params) is utilized to measure the model
size. We adopt an input image with resolution 512× 1024 to
calculate the floating-point operations per second (FLOPs),
which is a general metric to measure the model complexity.

4.2 Implementation Details
Networks. To make a fair and comparable evaluation, we
carry out experiments on the same teacher and student net-
work as [Liu et al., 2019]. Specifically, in all of our ex-
periments, PSPNet with ResNet101 [He et al., 2016], which
are pretrained on ImageNet, is used as the teacher network.
For the student network, we perform experiments on different
segmentation architectures, such as the representative models
PSPNet and Deeplab with the backbones of ResNet18 as well
as ESPNet to verify the effectiveness of our IDD method.
Training Details. We use the Pytorch platform to imple-
ment our method. Following [Liu et al., 2019] , we train our
student networks by mini-batch stochastic gradient descent
(SGD) for 40000 iterations. We set the momentum and the
weight decay as 0.9 and 0.0005, respectively. We apply the
polynomial learning rate policy, and the learning rate is cal-
culated as base lr ·

(
1− iter

total iter

)power
. The base learning

rate and power are respectively set to 0.01 and 0.9. For the
input images, we crop them to 512×512. The random scaling
and random flipping are applied to augment the data.

4.3 Ablative Study
Our loss function consists of four parts, Lskd, Lcw, Lid,
and Lpi. To explore the effectiveness of each loss item, we
conduct ablation experiments on the Cityscapes validation
dataset with the evaluation metric mIoU (%). The teacher
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Figure 3: The class IoU scores of KD based semantic segmentation approaches on the Cityscapes validation dataset. We use PSPNet-R18(1.0)
as the backbone of the student network.

Method mIoU (%) Params (M) FLOPs (G)
Val Test

T: PSPNet-R101 78.50 78.40 70.43 574.9

S: ESPNet 61.40 60.30 0.3635 4.422
+ SKD 63.80 62.00 0.3635 4.422
+ IFVD 65.13 63.07 0.3635 4.422
+ CD 67.27 65.32 0.3635 4.422
+ Ours 68.87 67.35 0.3635 4.422
S: PSPNet-R18 (0.5) 61.17 - 3.271 31.53
+ SKD 61.60 60.05 3.271 31.53
+ IFVD 63.35 63.68 3.271 31.53
+ CD 68.57 66.75 3.271 31.53
+ Ours 69.76 68.54 3.271 31.53
S: PSPNet-R18 70.09 67.60 13.07 125.8
+ SKD 72.70 71.40 13.07 125.8
+ IFVD 74.54 72.74 13.07 125.8
+ CD 75.90 74.58 13.07 125.8
+ Ours 77.59 76.33 13.07 125.8

Table 3: Comparison of different KD based semantic segmentation
methods on the Cityscapes dataset. “PSPNet-R18(0.5)” is trained
from scratch.

network is PSPNet [Zhao et al., 2017] with ResNet101 back-
bone (“T: PSPNet-R101”), and the student model is PSPNet
with ResNet18 (“S: PSPNet-R18”) also pretrained in the Ima-
geNet. As can be seen in Table 1, the structured KD loss Lskd

boosts the performance of the student network “S: PSPNet-
R18” from 70.09% to 73.03%. The channel-wise KD loss
Lcw further improves the student model to 75.78%. By adopt-
ing our inter-class distance distillation approach, the gain in-
creases to 5.34% (76.43% vs 70.09%). Furthermore, after
applying our position information loss Lpi, the accuracy of
the lightweight student network “S: PSPNet-R18” reaches
77.59%, approximately to the accuracy of the teacher net-
work “T: PSPNet-R101”, the mIoU value of which is 78.56%.
The experimental results prove that our proposed IDDM and
PIDM are effective.
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Figure 4: Comparison of Params and mIoU of different models on
the Pascal VOC validation set. We use PSPNet-R18(1.0) as the
backbone of the student network.

4.4 Results
Cityscapes
Table 2 shows the quantitative results on the Cityscapes
dataset. By using our IDD, the Params and the FLOPs of the
our student network (“Ours”) reduce by 81.44% (13.07 vs
70.43) and 78.12% (125.8 vs 574.9) compared to the teacher
network, while the mIoU accuracy only decreases 2.07%
(from 78.4% to 76.33%). Compared with other lightweight
models, our method also has remarkable performance. For
example, our IDD outperforms ENet [Paszke et al., 2016] and
ESPNet [Mehta et al., 2018] by 18.03% and 16.03% in ac-
curacy (mIoU), respectively. Notably, the Params of ours are
only half of ICNet [Zhao et al., 2018], but the accuracy of our
student network is still 5.0% higher. Although the accuary
of OCNet [Yuan et al., 2018] is 3.77% higher than ours, the
Params of ours are less than one fifth of OCNet. The results
demonstrate that IDD achieves a satisfactory compromise be-
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Figure 5: Comparison of different KD strategies for semantic seg-
mentation on the Pascal VOC validation dataset.

Method mIoU (%) Params (M)

T:PSPNet-R101 44.94 70.43

S:PSPNet-R18 24.65 13.07
+SKD 25.02 13.07
+IFVD 25.82 13.07
+CD 26.80 13.07
+Ours 27.69 13.07
S:PSPNet-MNV2 23.21 2.15
+SKD 24.89 2.15
+IFVD 25.43 2.15
+CD 27.74 2.15
+Ours 28.93 2.15

Table 4: Comparison of different KD approaches for semantic seg-
mentation methods on the ADE20K validation dataset.

tween accuracy and model size.
We also evaluate the performance of our method and other

KD based methods on the Cityscapes, e.g. SKD [He et
al., 2019], IFVD [Wang et al., 2020] and CD [Shu et al.,
2021]. The student models are ESPNet, PSPNet-R18(0.5)
and PSPNet-R18. Experimental results are listed in Table 3.
When we adopt ESPNet as the student network, our method
leads to a significant improvement of 7.47% and 7.05% on
the validation set and the testing set, respectively. Compared
with SKD which transfers the intra-class feature variance and
CD which transfers the channel-wise feature, our method out-
performs them by 3.74% and 1.60%, separately. After us-
ing our IDD, the performance of PSPNet-R18(0.5) increases
from 61.17% to 69.76%, and surpasses IFVD and CD by
6.41% and 1.19% in the validation set. When PSPNet-R18 is
adopted as the student model, with our IDD, the gains reach
to 7.50% (70.09% to 77.59%), and outperform IFVD and CD
by 3.05% and 1.69% respectively. The experimental results
show that our IDD is better than the previous KD strategies
for semantic segmentation.

In addition, as shown in Figure 3, we use the PSPNet-
R18(1.0) as the student network to calculate the mIoU for

each class compared with two state-of-the-art methods. Due
to our method enables the student network to have large inter-
class distance and rich position information, it performs well
on some categories. For example, rider, car and bus. Table
3 shows the qualitative results, which again demonstrate the
effectiveness of our IDD method.

Pascal VOC
As depicted in Figure 4, we adopt a dot graph to describe
the parameters and accuracy of different networks, i.e. OCR-
Net [Yuan et al., 2020], DeepLabV3, FCN [Long et al.,
2015], ANN [Zhu et al., 2019] and PSPNet. By using our
spatial knowledge distillation, the PSPNet-R18(1.0) outper-
forms FCN and ANN by 6.79% and 0.08%, respectively.

We adopt ResNet18 and MobileNetV2 as the student net-
work to evaluate our approach on the validation set. The
results are shown in Figure 5. With ResNet18 as the back-
bone of the student network, our approach improves the ac-
curacy of the model that without distillation by 6.01%, and
is better than the SKD, IFVD and CD respectively by 3.74%,
2.74% and 1.47%. For MobileNetV2, our method exceeds the
benchmark model by 4.66%, and improves the SKD, IFVD
and CD respectively by 2.88%, 2.21% and 0.89%.

ADE20K
To further verify the effectiveness of our proposed method,
we carry out experiments on the challenging dataset
ADE20K. The quantitative results are reported in Table 4.
When the student model is built on ResNet18, our pro-
posed approach improves the student model from 24.65% to
27.65%, and outperforms SKD, IFVD and CD by 2.67%,
1.87% and 0.89%. With MobileNetV2 as the student back-
bone, we achieve an improvement to 6.72% compared with
the benchmark model, and improves the SKD, IFVD and CD
by 4.04%, 3.50% and 1.19%, respectively.

5 Conclusion
In this paper, we present a novel knowledge distillation
method for semantic segmentation, helping the student model
have large inter-class distance in the feature space and rich
position information. Specifically, we propose the inter-class
distance distillation module and the position information dis-
tillation module to transfer the inter-class distance and po-
sition cue from the teacher network to the student network.
Ablative experiments show that our explored two modules en-
able the student network to mimic the teacher network better.
We demonstrate the effectiveness of our approach by con-
ducting extensive experiments on three public datasets, i.e.
Cityscapes, Pascal VOC and ADE20K.
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