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Abstract— Accurate 3D reconstruction of the hand and object
shape from a hand-object image is important for understanding
human-object interaction as well as human daily activities. Differ-
ent from bare hand pose estimation, hand-object interaction poses
a strong constraint on both the hand and its manipulated object,
which suggests that hand configuration may be crucial contextual
information for the object, and vice versa. However, current
approaches address this task by training a two-branch network
to reconstruct the hand and object separately with little com-
munication between the two branches. In this work, we propose
to consider hand and object jointly in feature space and explore
the reciprocity of the two branches. We extensively investigate
cross-branch feature fusion architectures with MLP or LSTM
units. Among the investigated architectures, a variant with LSTM
units that enhances object feature with hand feature shows the
best performance gain. Moreover, we employ an auxiliary depth
estimation module to augment the input RGB image with the
estimated depth map, which further improves the reconstruction
accuracy. Experiments conducted on public datasets demonstrate
that our approach significantly outperforms existing approaches
in terms of the reconstruction accuracy of objects.

Index Terms—Hand pose and shape estimation, 3D object
reconstruction, hand-object interaction.

I. INTRODUCTION

HERE has been a growing interest in analyzing human

hands from images, due to a wide range of immersive
applications, e.g., virtual reality (VR), augmented reality
(AR) and human-computer interaction [1]-[3]. Significant
progresses on hand detection [4]-[8] and hand pose esti-
mation [9]-[13] have been witnessed. However, most of
the existing studies assume bare hands, which is often not
the case when hands are interacting with some objects.
Recent research began to address the problem by captur-
ing 3D relationships between hands and objects, which can
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facilitate better understanding of hand-object interactions in
hand-related motion recognition, human action interpretation,
robotic behavior imitation, etc.

To capture and understand hand-object interaction, there are
two commonly used methods to generate 3D shapes from 2D
image inputs. One is to restore 3D hand pose and 6D object
pose [15], and the 3D relationship can be inferred from sparse
hand keypoints and object bounding boxes [16], [17]. Another
way is to directly reconstruct the pose and shape of hand and
object, so that more detailed information can be obtained, such
as the contact between the surfaces. In this case, the 3D model
of human hands can be restored by estimating hand pose and
using a shape prior model [18]-[20]. And if a 3D model of
the object is available, we can retrieve the object shape from
object database and align it with the predicted 6D pose into
camera coordinate system [21], [22].

The goal of our work is to recover high-quality 3D hand
and object meshes from a single hand-object image with-
out knowing object categories. This task has been studied
previously [14], [21], but the state-of-the-art performance is
still far from satisfactory due to the following challenges.
First, recovering 3D shape from a single-view image is an
ill-posed problem, and we need to infer the missing depth
information from 2D observations. Second, the severe mutual
occlusions between hands and objects coupled with inter-finger
occlusions make the reconstruction even more difficult. Third,
physical constraints need to be considered to avoid inferring
infeasible interactions. For example, surface penetration is
usually not allowed and physical contacts are required when
a hand holds an object. However, it is challenging for the
network to discover these constraints from the training data
without providing domain knowledge.

Different from existing methods [14], [21] that reconstruct
hand shape and object shape separately using state-of-the-art
networks from these two individual tasks, we jointly estimate
their 3D shapes and explore the reciprocity of two recon-
struction tasks. Specifically, as shown in Fig. 1, our method
first augments the RGB image into RGB-D representation by
estimating the corresponding depth map and then feeds the
RGB-D image into the feature encoding branches for hand
and object individually. Inspired by the “Block LSTM” used
for sequential blocks connection in [23], we use the connection
information of structural components to benefit the joint recon-
struction task. We modify the parallel joint reconstruction task
by adding a step-by-step feature fusion process that propagates
features in the latent space through a long short-term memory
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Fig. 1. Overview of the separated two-branch model [14] and the proposed
cross-branch model for joint hand-object reconstruction.

(LSTM) [24] block. Generally, for different scenarios and
samples, the shape of hands conforms to some priors while the
shape of objects can be more varied. In our setup, we found the
hard part is relatively more robust than the object part because
the hand part employs a low-dimensional parametric model
learned from more than two thousand 3D scans [20], while the
object part uses less constrained vertex positions. Therefore,
we use the more robust hand feature to enhance the object
feature through an LSTM feature fusion module. Specifically,
the hand feature and the object feature enter the LSTM
module sequentially (see Fig.2-B) so that the later entered
object feature is modulated by the LSTM state, which stores
information from the hand feature. We further investigate
several alternative feature fusion strategies in Section IV-C
and demonstrate the effectiveness of the LSTM-based module.
Finally, the hand feature and the enhanced object feature are
decoded to regress 3D shapes of hand and object.

Our main contributions are summarized as follows:

e We design an end-to-end cross-branch network that
significantly improves accuracy over existing methods
for reconstructing 3D shapes of hand and the interacting
object from a single RGB image.

e We propose the first approach to extensively investi-
gate the feature fusion scheme for jointly reconstructing
hands and objects.

e We introduce a depth estimation module to augment
the RGB input into an RGB-D image, which effectively
brings additional performance gains.

II. RELATED WORK

This work is primarily related to the 3D reconstruction
of hands and objects from hand-object interaction images.
Secondly, this work is relevant to hand pose and shape
estimation. Thirdly, it is also related to single view 3D object
reconstruction. Moreover, the proposed LSTM feature fusion
scheme is related to approaches that employ recurrent neural
network (RNN) in 3D vision tasks. We briefly review the
related work in this section.
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A. 3D Parsing of Hand-Object Image

Analyzing hand-object interaction in 3D is a challeng-
ing topic in computer vision, including estimating the 3D
shape of hands in interaction with object [25], [26], tracking
hands while it is interaction with an object [27]-[30], and
reconstructing objects for in-hand scanning systems [31],
etc. Recently, the development of deep learning has further
advanced the progress of this topic. Recent learning-based
works conduct joint hand-object pose estimation either from
depth image [16] or from RGB image [32]-[34], however,
sparse joint estimation is probably not sufficient for reasoning
about the hand model or hand-object contact. Very recently,
some works [14], [21], [22], [35], [36] take into account 3D
reconstruction of hand-object interaction. Instead of tracking
hand that interacts with a deformable object as in [35],
we focus on estimating 3D shapes of a hand and a rigid
object. Although [21], [22] also model 3D hand-object shapes,
the object categories are known in their settings. In order to
adapt to more types of objects, we directly estimate object
shapes and do not assume that the model of the object is pre-
defined. Our proposed method is most similar to [14] which
uses a two-branch network to estimate 3D representation of
hand and object from the RGB image. There are two main
differences between our method and [14]. First, we introduce
a depth estimation module to estimate the depth map con-
taining abundant structure information and use the RGB-D
information for the 3D reconstruction. Second, the hand-object
relationship has not been well explored in [14], while we
introduce the connection between the two branches through
the proposed LSTM feature fusion module.

B. Hand Pose and Shape Estimation

Hand pose estimation has developed rapidly since the
advance of commodity RGB-D sensors [37], [38]. Signifi-
cant progress in 3D hand pose estimation from either RGB
image [10], [11], [39]-[44] or depth map [12], [45]-[50] has
been witnessed. To better display the surface information of
the hand, many works focus on producing a dense hand mesh
which is achieved through depth input [51] or RGB input [14],
[52]-[57]. In our work, to better infer hand interactions with
objects, we also focus on predicting accurate hand meshes
from RGB image. The MANO hand model [20], whose
parameters are regressed from a neural network, is employed
to produce the hand joints and meshes.

C. Single-Image 3D Object Reconstruction

Recovering 3D object shape from a single image is a
challenging problem. Recent approaches have attempted to
represent objects in voxels [58], [59], point clouds [60], [61],
octrees [62], [63], or polygon meshes [64]-[69]. Our work
closely relates to methods that represent objects by meshes.
They usually generate 3D structures by deforming a set of
primitive square faces [66] or a generic pre-defined mesh [67],
[69]. Similar to AtlasNet [66], we also form 3D meshes by
deforming a set of primitive square faces. A view-centered
variant of AtlasNet is adopted to generate 3D objects from
the hand-object images [14].
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(A): The architecture of our proposed network. First, a depth map D is estimated from the input image / through the depth estimation module fg.

Then the depth map D, concatenated with the input image /, is fed into the rest network. Two separate encoders, fres ; and fres o, are used to extract the
hand and object feature rj, and ro, respectively. A feature fusion module ffyygion is then employed to perform cross-branch communication. Finally, the fused
features are used to reconstruct 3D meshes M, and M,. (B): A variant of the feature fusion module fi0n: The hand feature rj and the object feature ro

are sequentially fed into LSTM modules to obtain the fused hand-aware object feature r(;" . Several other variants are presented in Fig. 3.

D. Recurrent Neural Network in 3D Vision Tasks

RNN is well-accepted for its effectiveness in processing
temporal sequence [70], [71]. Recently, RNN becomes a
powerful regulator in 3D vision tasks, such as human pose
estimation [72]-[74] and 3D object reconstruction [75]. Very
recently, [73] presents a ConvLSTM to allow the propagation
of contextual information among different body parts for 3D
pose estimation. Reference [23] proposes 3D shape programs,
which take a 3D shape as input and outputs a sequence of
primitive programs, to describe the corresponding 3D shape of
an object. Unlike them, our goal is not to parse an individual
structure by using the contextual information among structural
parts. Instead, we aim to link the information of two different
individuals with an LSTM feature fusion module in our joint
hand-object reconstruction task.

III. PROPOSED APPROACH

The goal of our method is to reconstruct both hand and
object in mesh representation from an image where a hand is
interacting with an object. We propose a two-branch branch-
cooperating network to solve the problem. A depth map is pre-
dicted from the RGB image first, and then the RGB-D image,
which is a concatenation of the original RGB image and the
estimated depth map, is fed into the following reconstruction
branches. A two-branch network is adopted to estimate hand
and object shapes, and a feature fusion module bridging
the two branches is proposed to enhance the individually
learned hand and object features (see Fig. 2). In the following,
we describe our proposed method in detail.

A. Depth Estimation

Previous works [76], [77] show that utilizing depth map
can bring benefits to the monocular RGB-based shape estima-
tion task. However, ground truth depth maps are not always
available with RGB images. In this work, we employ a

depth estimation module to augment the RGB input to an
RGB-D input.

A depth estimation module f; is used to estimate depth
map D from the color image I: D = f;(I). Similar to [76],
ResNet-18 [78] is used to encode the input image into latent
representation, and a decoder is used to predict the depth map.
The decoder consists of four sets of 5 x 5 convolutional layers
and four sets of 1 x 1 convolutional layers, and a ReLU layer
is added after each convolutional layer. The output is a one-
channel depth map of the same size as the input image.+
We concatenate the estimated depth map D with the source
RGB image I, and fed the RGB-D image into the following
network.

The loss for this depth estimation task consists of two parts:
the least absolute deviations loss (also referred as L1 distance)
L1 and the structural similarity (SSIM) loss Lgsim (Eq. 1).
Assim 18 a weighting factor which is set to 1000 empirically.
We use ﬁ as a loss term to encourage the structural
similarity between the predicted depth map and its ground
truth [79]. The depth loss Lp is the summation of the least
absolute deviation loss £; and the structural similarity loss
Lssim (Bq. 2).

1
ﬁSSlm - /lssim . SSIM (1)
ED = El + »Cssim (2)

Note that the depth values of the background are missing
in the synthetic images, and therefore we only calculate the
loss for the foreground regions during network training.

B. Feature Encoding

The raw RGB image is first concatenated with the estimated
depth map, and the four-channel RGB-D image is fed into
the encoders of the two-branch network. Each branch takes
the RGB-D image as input and extracts a latent represen-
tation by the ResNet-18 encoder [78] pre-trained on the
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ImageNet [80]. The hand and object representation is denoted
as rp = fRes_h (I @D D) and r, = fRes_o(I @ D) reSPeCtiVely,
where @ denotes concatenation.

C. 3D Shape Reconstruction

1) Hand Pose and Shape Estimation: We regress model
parameters from the latent representation and then use the
MANO model as a network layer to predict hand pose and
shape as [14], [53]. Specifically, we feed the hand feature ry, to
the hand parameter estimator fj,. to regress hand parameters,
including pose ¢ and shape f: 0, f = fupe(ry). Then, a dif-
ferentiable MANO hand model fyano is used to compute
hand joints J; and hand mesh Mj according to 6 and p:
Jn, M, = fuano (@, B). 0 determines the joint angles and
f adjusts the shape of the hand (see [20] for more details).

To supervise the learning of hand estimation, we adopt a
common joint position loss £;. Meanwhile, a vertex position
loss Ly is used to supervise the training of hand mesh when
the ground truth hand meshes are available. Both losses are
calculated with the L2 distance between the predicted value
and the ground truth value The shape regularization term is
defined as Lp = || B — p || to encourage the estlmated hand
model shape /3 to be close to the average shape f = 0e Rlo
The pose regularization term is defined as Ly = || 6 — ] || to
penalize the unreasonable pose which is far from the average
pose O = 0eR¥. In summary, the overall loss for hand part
LHana is the weighted sum of Ly, Ly, Lg and Ly (Eq. 3),
where pj, up and pg are the weighting factors.

3)

2) Object Shape Reconstruction: Our object reconstruction
branch is similar to AtlasNet [66]. In AtlasNet, the latent
shape representation and a set of 2D points sampled uniformly
in the unit square are fed into the network, and a collection
of parametric surface elements is generated. These parametric
surface elements infer a surface representation of the shape.
AtlasNet is designed to reconstruct object meshes in a canon-
ical view, and [14] has validated its effectiveness in view-
centered coordinate in the hand-object task. Unlike AtlasNet,
the latent representation is extracted from the RGB-D input
in our method. Then the AtlasNet block fa;4s decodes the
latent representation r, to an object mesh M., in the object
canonical coordinate system (Eq. 4). A multi-layer perceptron

Ltana = Ly + pg Ly + uplp + nole

(MLP) neural network frs is used to predict the parameters
of translation 7" and scale s (Eq. 5). Then, according to 7' and
s, we translate the regressed mesh M., into the final object
mesh M, =sM., + T.

My = fAtlas (ro) (4)
T,s = frs(ro) )

We use a symmetric Chamfer loss Lcp as [14], [66], which
measures the difference between the predicted 642 vertices
of the regressed object mesh M, and 600 points which is
uniformly sampled on the surface of ground truth object mesh
M, (Eq. 6). Except for comparing the object meshes M,
with M, in the hand-relative coordinate, we also compute
the Chamfer loss Lcpeqn in the object canonical coordi-
nate (Eq. 7), where M., is the regressed object mesh in
Eq. 4 and M., is normalized from the ground truth mesh
Mg (Eq. 8) by the ground truth object centroid T and the
maximum radius §.

cp = 26oozmlnllp q I

Z min llq—p I1?) (6)

642

. 2
Lcpean = = min lp—ql
co

@)

Mcg = (Mg - T)/§ (8)

The translation loss is defined as L7 = | T — T ||2 and the
scale loss is defined as Li=]|s—3$§ ||2, where the ground
truth object centroid T and the maximum radius § are com-
puted in the hand-relative coordinates. An edge-regularization
loss Lg is used to penalize edges’ length difference and a
curvature-regularizing loss £y, is used to encourage reasonably
smooth surface. The overall loss for object part Lopjecr is the
weighted sum of Lcp, Lepeans L1, L, L1 and Lg (Eq. 9),
where ur, ug, L, g are the weighting factors.

Lopject = Lcp + Lepean + w1 Lr + 1L

+urly +uele (9)
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3) Connecting Two Branches via Feature Fusion Module:
For this hand-object reconstruction task, we propose to link
the independent features of the hand and the object branches.
To facilitate joint reconstruction, we propose to connect the
two branches in latent space via a feature fusion module.
In our model, the hand representation rj is more robust than
the object representation r, because the hand part uses the
MANO model [20], which is a low-dimensional parametric
model trained on the hand data from 2018 scans, thus it
contains rich prior knowledge about the valid hand space.
In contrast, objects are represented using vertex positions
optimized only by training data and therefore contain less
shape prior information. Therefore, we choose the hand feature
ry, as the provider to enhance the object feature r, by enabling
the object branch to perceive information from the hand
branch. As shown in Fig. 2-B, we employ a two-timestep
LSTM ffusion as the feature fusion module. The hand feature
rp is fed to the LSTM module at the first timestep, and
then the state of the LSTM layer, storing the information
of the current hand’s pose and shape, is propagated into
the object branch, resulting in enhanced hand-aware object
feature rf = f ‘fusion(Fh, To), Where r, is the original object
feature. The two-timestep LSTM uses one recurrent layer and
the number of features in the hidden state is 1000. After
adding the feature fusion module, the object representation
r, is replaced by the enhanced object feature r;} in Eq. 4 and
Eq. 5. To better explore the effectiveness of the feature fusion
module, we investigate several fusion strategies (Fig. 3) and
compare their performance in Section I'V-C.

Additionally, we take into account the contact between the
hand and the object when recovering their meshes. Different
from 3D shape reconstruction from a hand-only or object-only
image, jointly reconstructing the hand and the object needs
to deal with the contact problem. Reference [14] formulates
the contact constraint as a differentiable loss Lconracr, Which
consists of an attraction term and a repulsion term. We adopt
the same contact loss, and more details can be found in [14].
The overall loss function £ of our proposed network is the
weighted sum of the above mentioned four parts (Eq. 10),
where the up, (o, (c are the weighting factors.

L=Lp+ unLhana + ﬂ0£0bject + ucLcontacr  (10)
IV. EXPERIMENTS
In this section, we first present datasets, evaluation metrics
(Section IV-A), and implementation details (Section IV-B) of
our experiments. Then, we analyze the effect of the proposed
modules (Section IV-C) and evaluate the overall performance
of our method (Section IV-D).

A. Datasets and Evaluation Metrics

We evaluate our method on three publicly available datasets:
a synthetic third-person perspective dataset, a real-world
egocentric dataset, and a real-world third-person perspective
dataset.

1) ObMan Dataset: The ObMan dataset [14] is a large-scale
synthetic dataset containing hand-object images, in which the
hand is generated through the MANO model [20] and the
object is sampled from the ShapeNet dataset [81]. More than

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

2000 object meshes are presented in the ObMan dataset whose
objects are selected from eight categories in the ShapeNet
dataset. The plausible grasps are generated by using the
Grasplt software [82]. The ObMan dataset contains 141K
training frames and 6K test frames. For each frame, it provides
the RGB-D image, 3D hand and object meshes, and 3D hand
keypoints.

2) First-Person Hand Action Benchmark Dataset (FHB):
The FHB dataset [83] collects RGB-D video sequences of
daily hand action categories with hand-object interaction. 3D
hand joints and 6D object poses are automatically annotated.
Following [14], a subset of FHB named FHBc containing
around 5K frames for training and 5.6K frames for testing
is used in the experiments. The same object categories appear
in both the training and test set.

3) Hands in Action Dataset (HIC): Four sequences in the
HIC dataset [29] are used, where a hand interacts with an
object. Similar to [14], we only use frames in which the hand
is less than Smm away from the object. We utilize sequence
15 and sequence 20 as the training set, and sequence 19 and
sequence 21 for evaluation. The hand and object meshes are
provided.

To evaluate the hand estimation results, we use three met-
rics: (i) MPJPE: the mean per joint position error (MPJPE) in
the Euclidean space for all joints on all test frames (in mm);
(ii)) HME: the hand mesh error (HME) is the average error
in the Euclidean space between the corresponding vertices of
the hand mesh on all test frames (in mm); (iii) 3D PCK: the
percentage of correct key points (PCK) whose joint error does
not exceed a certain threshold.

To evaluate the object reconstruction results, we report the
surface-to-surface distance between the predicted mesh and
the ground truth mesh. Specifically, the symmetric Chamfer
error (CD) (Eq. 6) is calculated on 600 points sampled on
the ground truth mesh and all 642 vertices of the estimated
mesh [14], [66] (in mm x mm).

To evaluate function of the contact between the hand and
the object, we report the penetration depth (PD) which is
the maximum penetration (in mm) between the hand and the
object averaged on all the test frames as [14]. The maximum
penetration is defined as the maximum distance (in mm)
between the surfaces of the two meshes in the intersection
space if exist. Otherwise, the error is O if the two meshes do
not penetrate each other.

B. Implementation Details

We use Adam [84] to optimize the network with batch
size 16. The proposed network consists of three parts, i.e., the
depth estimation part, the hand branch, and the object branch
(together with the feature fusion module). Instead of directly
optimizing the whole network, we adopt a stage-wise training
strategy to train the network.

To train our model on the ObMan dataset, we divide the
training procedure into several stages. We first train the depth
estimation part for 90 epochs, we initialize the learning rate
to 3 x 107* and decrease it to 10™* and 107> after every
30 epochs. Then the depth estimation part is frozen. The
hand branch is trained for 250 epochs with the learning rate
initialized to 10™* and decreased to 107> at epoch 200. After
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that, the hand branch is frozen and the object branch is trained
in the same procedure as the hand branch. Finally, we fine-
tune the hand and object branches with the contact loss for
50 epochs by setting the learning rate to 107>,

For the small FHBc dataset, the same training procedure is
used as that on the ObMan dataset except that the hand and
object branches are initialized with the weights pre-trained on
the ObMan dataset. The two-branch 3D reconstruction part is
trained for 150 epochs with learning rate deceased at epoch
100. The weight of the depth map estimation part is randomly
initialized since the regular depth map is used in the FHBc
dataset while the depth foreground map is used in the ObMan
dataset.

For the HIC dataset, the whole network is initialized with
the weights pre-trained on the ObMan dataset. And we fine-
tune the network for 250 epochs with the learning rate initial-
ized to 10~* and decreased to 10~ at epoch 200. To supervise
the training, we jointly use the hand loss Lgg4uq, Object loss
Lobject, and contact constraint Lconsact-

For the hand estimation Eq. 3, the weighting factors are
set as uy = 0.167, pup = 0.167 and py = 0.167. For the
object shape reconstruction Eq. 9, ur = 0.167, us = 0.167,
ur = 0.1 and ug = 2. For the overall loss function Eq. 10,
we set uy = 0.001, up =0.001 and pc =0.1.

C. Ablation Study

We present an ablative analysis to evaluate the effectiveness
of the proposed modules. We analyze the effects of depth
estimation, feature fusion module, two-branch pipeline, and
contact computation. Table III shows the results of different
versions of our model.

1) Effect of Depth Estimation Module: To illustrate the
effect of depth estimation, we conduct a comparison on
both datasets to evaluate the hand estimation task. For the
setting without the depth estimation, we use an empty map to
replace the estimated depth map and leave other components
unchanged. We evaluate the performance by the percentage of
correct keypoints (PCK). Note that PCK evaluates all joints
of the test set, and here we follow [54] and use the error
thresholds from 0 to 50mm in Fig. 4. As shown in Fig. 4,
the performance is improved compared to the method with-
out the depth estimation module. From the curves, we can
see that the PCK is improved by about 10% compared to
the method without the depth estimation module when the
error threshold is between 20mm and 40mm on the FHBc
dataset, and the PCK is improved by about 3% when the error
threshold is between 10mm and 30mm on the ObMan dataset.
Apart from evaluating the improvement on hand estimation,
we also report the improvement on object reconstruction of the
ObMan dataset. Comparing index 2 and index 5 in Table III,
after removing the depth estimation module f; from index 2,
the object CD will increase by 4%, the hand MPJPE will
increase by 6.2%, and the hand HME will increase by 6.9%.
Intuitively, the depth map is complementary to RGB image as
it provides abundant and more direct structural information,
which is beneficial for the inference of 3D reconstruction.
It is worth mentioning that the introduced depth estimation
module does not need additional ground-truth information
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Fig. 4. Comparison of whether to use the depth estimation module on the
FHBc dataset and the ObMan dataset. The proportion of correct keypoints
over different error thresholds are presented.
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Fig. 5. Qualitative visualization of the depth estimation on the ObMan dataset
(left) and the FHBc dataset (right).

during training, as its supervision can be derived from ground-
truth 3D meshes.

2) Comparison of Different Feature Fusion Modules: In this
section, we conduct experiments to validate the effectiveness
of the feature fusion module. Several alternative architectures
of the module are investigated. When no fusion is used,
the hand branch and the object branch are trained sepa-
rately (see Baseline in Table I). Three fusion strategies are
tested based on the provider and receiver of the cross-branch
information. (i) LSTM(object™): LSTM means the proposed
LSTM feature fusion module is used to fuse the features and
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TABLE I

EVALUATION RESULTS ON THE OBMAN DATASET IN TERMS OF
THE FUSION STRATEGY AND WHETHER TO PERFORM CONTACT
COMPUTATION. “Baseline” IN THIS TABLE INDICATES A SEPARATE
Two-BRANCH NETWORK WITH THE DEPTH ESTIMATION
MODULE AND WITHOUT USING THE FUSION MODULE
(DEFINED IN SECTION IV-C.2). % INDICATES
END-TO-END TRAINING, AND OTHER SETTINGS
ARE TRAINED THROUGH A STAGE-WISE
APPROACH (IN SECTION IV-B)

Method MPJPE| CD /|
Baseline 9.7 426.1
Baseline+LSTM(hand™) 9.5 426.1
Baseline+LSTM(object™) 9.7 405.1
Baseline+LSTM(handt object™) 10.1 392.6
Baseline+contact 9.7 422.5
Baseline+LSTM(object™ )+contact (Ours) 9.6 403.8
Baseline+LSTM(object™ )+contact (Ours)* 10.1 391.5

“4” after object means the object feature is enhanced by fusing
information from the other branch, which is the hand branch
in this case (See Fig. 2-B). (ii) LSTM(hand™): The hand
feature is enhanced by fusing information from the object
branch via the LSTM feature fusion module (See Fig. 3-A);
(iii) LSTM(hand*object™): We use two LSTM modules,
one to enhance object by hand and vice versa (See Fig. 3-B).
Unlike the branch-wise training scheme in LSTM(hand™) and
LSTM(object*), the hand and object branches are trained
together with mutual enhancement. As shown in Table I,
the object CD error of LSTM(objectt) decreases by 5%
with the object feature enhanced by perceiving information
from the hand branch, and the MPJPE of LSTM(hand™)
decreases by 2% with the hand feature enhanced. When two
individual LSTM feature fusion modules are used to enhance
both features (as LSTM(hand*object™), the results show
that mutual fusion helps to improve the shape of the object
but makes the hand worse. We think that the more robust
hand feature helps the object feature when they are fused and
trained with each other. Meanwhile, the object feature drags
the hand feature down to a certain extent, resulting in slightly
worse hand estimation and better object estimation. As for the
choice of the direction of information transmission, we think
it is a trade-off between improvements of the hand and the
object. The LSTM(object™) is chosen in this paper because
both hand and object get good results.

Apart from the proposed LSTM feature fusion module,
we conduct ablative experiments to study the commonly-
used MLP-based feature fusion modules, including concate-
nation and element-wise addition. We also use a stacked
LSTM in the LSTM module to see if more capacity can
further improve the performance. Three alternative feature
fusion strategies are tested to enhance the object feature using
information from the hand feature. (i) MLP_Add(object™):
The object feature is enhanced via element-wise addition
with information from the hand branch through a MLP
mapping (See Fig. 3C); (ii) MLP_Concat(object™): The
object feature is enhanced via concatenation with informa-
tion from the hand branch through an MLP mapping, and
then the enhanced object feature is converted to a fixed
size vector via a fully connected (FC) layer (See Fig. 3D);
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TABLE II

OBJECT RECONSTRUCTION RESULTS ON THE OBMAN DATASET WITH
DIFFERENT FEATURE FUSION MODULES

Method CD |
Baseline 426.1
Baseline+MLP_Add(object™) 437.2
Baseline+MLP_Concat(object™) 428.1
Baseline+LSTM(object™) 405.1
Baseline+LSTM_2layers(objectt) — 402.3

(iii) LSTM _2layers(object™): The same feature fusion
method is used as in LSTM(object™), while two LSTMs
are stacked together to form a stacked LSTM in the LSTM
module. As shown in Table II, the object reconstruction
results become worse after using the MLP-based modules,
while the LSTM and LSTM_2layers can greatly improve the
performance of the object reconstruction. Note that in our
experiments, MLP-based modules use similar parameters as in
LSTM(object™), while LSTM_2layers(object™) uses double
parameters. Among these modules, the LSTM-based modules
are most helpful and the LSTM module stacks two LSTMs is
a little better than another but it has double parameters in the
feature fusion module. We use LSTM(object™) in this paper.

As shown in Fig 6, we compare the decreasing speed of
the object CD in the evaluation set. To better evaluate the
effect of the feature fusion module LSTM(object™), the depth
estimation module is removed. It can be seen from the curve
that the proposed feature fusion module greatly accelerates
the speed of the object CD error reduction. Finally, if both
the depth estimation module and the feature fusion module
are removed from our model (shown as index 6 in Table III),
the reconstruction performances of both hands and objects will
drop dramatically.

3) Effect of Two-Branch Encoding: In addition to the above
methods of encoding features with two encoders and then
fusing cross-branch features, we also implemented an extreme
bridging method, that is, the hand branch and the object
branch shares the same features encoded by one encoder. In
this setup, a ResNet-34 is used as a shared encoder fgres s
in order to balance the total trainable parameters to make a
fairer comparison. As present in Table III (index 4), we use
a shared backbone and remove the hand encoder, object
encoder and the fusion module from index 2. By replacing
the separate encoders with the shared backbone network,
comparable results can be obtained on object reconstruction,
while the hand MPJPE increased by 10%. We think that each
branch specializes in its task while the fusion module helps
with perceiving cross-branch information in the two-branch
branch-cooperation pipeline, thus the two-branch pipeline is
more efficient than the shared encoder setup for this joint hand-
object reconstruction task.

4) Contact Loss and Its Connection to Feature Fusion
Module: To study the effect of the feature fusion
module and the contact term, different modules are
employed in the experiments. Baseline+contact: We train
the hand and object branches without feature fusion as
the Baseline and then add a contact loss to fine-tune
both branches; Baseline+LSTM(object™)4-contact (Ours):
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TABLE III

ABLATION STUDIES FOR DIFFERENT COMPONENTS USED IN OUR
METHOD ON THE OBMAN DATASET. THE DEPTH ESTIMATION
MODULE fz; CONTRIBUTED THE MOST TO THE HAND SHAPE AND
THE FEATURE FUSION MODULE ffy5ion CONTRIBUTES THE
MOST TO THE OBJECT SHAPE

S £
Index | fy Eﬁgg;ifs ffusion | Contact | MPJPE | HME] CD |
1 v v v v 9.6 9.8 403.8
2 v v v X 9.7 10.1 405.1
3 v v X X 9.7 10.0 426.1
4 v X X X 10.5 10.8 404.9
5 X v v X 10.3 10.8 421.3
6 X v X X 10.3 10.8 860.6
—— W/0o fg, W/ frusion
35001 —— W/o fy, W/O Frysion
3000 {
2500
Ja
© 2000
1500 1
1000 1
500 1
0 20 40 60 80 100 120 140
Epochs
Fig. 6. Ablation of the LSTM fusion module on the ObMan dataset. This

plot shows the first 150 epochs of training: the fr5ion makes the object CD
error in the evaluation set decrease fast.

“+contact” means a contact loss is used to fine-tune both the
branches.

Note that each
convergence. As

stage has been trained to
shown in Table I, comparing
Baseline+contact, Baseline--LSTM(object™) and
Baseline+LSTM(objectt)+contact (Ours), the object
error decreases by 0.8%, 4.9% and 5.2% accordingly. The
proposed LSTM module and the contact computing both
are “bridges” to connect hand and object, the results reveal
that our proposed LSTM block is more helpful than the
contact loss in reducing the object reconstruction error, and
the combination of the LSTM module and the contact loss
effectively improves performance. Both the proposed LSTM
feature fusion module and the contact constraint link two
branches of hand and object, but they achieve this goal
in different spaces. The feature fusion module connects
branches in the feature space while the contact constraint
is implemented directly on the meshes. We think that the
connection in the feature space is easier to learn, so the
proposed LSTM module contributes more than the contact
loss. In summary, the LSTM block can cooperate well with
the contact term and helps to get better shapes from the
hand-object image, and Baseline+LSTM(object™)+contact
(Ours) achieves best overall performance on hand-object
reconstruction task.

5) Comparison of Training Schemes: As illustrated in
Section I'V-B, we design a stage-wise training scheme to train
the network components separately. Our network can also be
trained in an end-to-end manner in which the whole network
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TABLE IV

COMPARISON OF MPJPE (MM) ON THE OBMAN DATASET
AND THE FHBC DATASET.

Method FHBc ObMan
[14](w/o contact) 28.1 11.6
[14](w/ contact) 28.8 11.6
Ours(w/o contact) 27.9 9.7
Ours(w/ contact) 27.5 9.6

is trained for 250 epochs with the learning rate initialized to
10~* and decreased to 107> at epoch 200. The final MPJPE
and CD is 10.1 and 391.5, respectively (see Table I). Similar
to the results of Baseline+LSTM(hand*object™), the end-
to-end version gets better object reconstruction performance,
but the hand performance is not as good as the stage-wise
version. We think this may be because the poor object feature
drags the hand feature down to a certain extent while the hand
feature is worse than that in the fixed trained hand branch. Note
that except for this set of end-to-end training results, other
experiments all use a stage-wise training scheme.

D. Results

In this section, we first present results of depth estimation
(IV-D.1), hand recovery (IV-D.2), object recovery (IV-D.3),
and shape penetration (IV-D.4) on the ObMan and FHBc
datasets. Then we use the HIC dataset to evaluate the perfor-
mance of fine-tuning a synthetic dataset pre-trained model to
the small real-world dataset (IV-D.5). In addition, we present
some visualization results.

1) Performance of Depth Estimation: For depth estimation,
we use a simple encoder-decoder structure to directly pre-
dict a depth image from the input monocular RGB input.
We estimate depth foregrounds on the ObMan synthetic dataset
and produce regular depth maps on the FHBc dataset. The
qualitative results are shown in Fig. 5. We find that the
estimated depth images preserve intrinsic information about
hand-object shape with smooth surfaces. Note that when
training the depth estimation part, the weights of the network
are randomly initialized on both datasets.

2) Performance of Hand Estimation: We compare the hand
estimation result of our method with the state-of-the-art
method [14]. The mean error of all joints over all test frames
is presented in Table IV. On the challenging FHBc dataset
which only provides a small amount of similar images, our
method outperforms [14] in both settings. Our method obtains
hand pose error of 27.9mm while the baseline method [14]
is 28.1mm under the setting without contact loss. With the
contact loss, our method obtains an error decreasing by 4.5%
(28.8mm vs 27.5mm), while the MPJPE of [14] increased
by 2.5%. On the large-scale ObMan dataset, the performance
of our method is 16.4% better than [14], and we obtain a
MPJPE of 9.7mm while their MPJPE is 11.6mm. It is worth
noting that after adding the contact loss, the accuracy of
hand joints remains unchanged or slightly decreases in [14],
while it has an obvious improvement in our method. We think
this is because the proposed LSTM feature fusion module
helps the network reconstructs shapes with more reasonable
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TABLE V

COMPARISON OF 3D OBJECT RECONSTRUCTION WITH [14] ON THE
OBMAN SYNTHETIC DATASET. CD IS THE SYMMETRIC CHAMFER
ERROR. PD IS THE PENETRATION DEPTH

Method CD | PD |
[14](w/o contact) 641.5 9.5
[14](w/ contact) 637.9 9.2
Ours(w/o contact) 405.1 9.6
Ours(w/ contact) 403.8 9.1
Estimated Estimated GT
Images ..
~  handjoints hand meshes hand meshes

A

Fig. 7. Qualitative comparison between our estimated hand meshes and
ground truth meshes on the ObMan dataset. In the column of hand joints,
we use the skeleton with opaque color to represent the estimated hand joints
and the skeleton in semi-transparent color to represent the ground truth. Green
points are randomly sampled from the ground truth object meshes. Results
show that the estimated hand joints and meshes are close to the ground truth.
Note that scales are changed in the visualization.

relative positions, and the shapes with better relative positions
can better initialize the fine-tuning stage with the contact
loss. We present the visualized samples from the testing set
in Fig. 7.

3) Performance of Object Estimation: The ObMan
dataset [14] provides precise object annotations, and we
report the object reconstruction accuracy on the ObMan
dataset in Table V. When no contact loss is used, the object
reconstruction result of ours is already much better than [14],
obtaining a significant error decrease by 36.8% from 641.5 to
405.1 on CD. The object CD error further decreases from
405.1 to 403.81 after fine-tuning our network with the contact
computation. The object CD error is 36.7% lower than [14]
under the setting with contact computation. This great
improvement in object reconstruction reveals the remarkable
effect of our proposed method.
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TABLE VI

COMPARISON WITH [14] ON THE HIC DATASET. T INDICATES THAT THIS
VALUE IS AN APPROXIMATE VALUE OBTAINED FROM THE HISTOGRAM

Method MPJPE | CD |
[14] 277 4507
Ours 75 62.2

4) Results on Shape Penetration: We report the penetration
depth between the hand and object meshes. In physical space,
to obey the rule that hand and object should not share the same
space, good shapes of hand and object show low penetration
depth. As shown in Table V, the penetration depth of our
method is 9.6mm when without the contact computation, and it
decreases by 5.2% and reaches to 9.1mm after adding contact
training procedure. When adding the contact computation, our
proposed method gets smaller penetration than [14].

5) Results on the HIC Dataset: Pre-training on the large-
scale synthetic data is particularly important for small-scale
real datasets. We fine-tune the model pre-trained on the
ObMan dataset to the HIC dataset and compare the per-
formance with [14]. By using data selection described in
Section IV-B, the HIC training set consists of only 150 images
and the HIC evaluation set consists of 251 images. The
network is pre-trained on the ObMan dataset and then fine-
tuned to the HIC training set, and we compare the results of
hand-object reconstruction in Table VI. Our method obtains
the MPJPE of the hand and the CD of the object in 7.5mm and
62.2mm respectively, while [14] obtains 27mm and 450mm
respectively. These results show that our method has a strong
ability to fine-tune the synthetic pre-trained model to real
datasets when using a small amount of real-world training data.
We also find that the fine-tuned results show much smaller
error than the evaluation results on the large-scale ObMan
dataset and the FHBc dataset, We think this may be because
there are only two types of objects (i.e., balls and cube) and
the configure of hands is similar (i.e., the hand holds the object
with two fingers). This may because there are only two types
of objects (i.e., balls and cube) and the configure of hands
is similar (i.e., the hand holds the object with two fingers).
Therefore, 150 training samples (with data enhancement via
rotation and translation) are sufficient for the proposed network
to learn these configurations and obtain good hand-object
reconstruction results.

Some visual demonstration images from the test sets of the
ObMan and the FHBc are presented in Fig. 8. The results
demonstrate that our method produces high-quality object
meshes that can accurately represent the object shape from
monocular hand-object images. The fifth and tenth columns
of Fig. 8 show that the produced hand and object meshes can
reveal hand-object relationships in 3D space. More generated
shapes from the testing set of ObMan are shown in Fig. 11.
We also present visualizations from the HIC evaluation set
in Fig. 9.

V. DISCUSSION

In Fig. 10, we show failure cases, unreasonable object
shapes are produced in some unseen parts, and the relative
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Fig. 8.

Qualitative comparison of our method on the ObMan dataset (left) and the FHBc dataset (right). From left to right: input, estimated 3D hand pose,

estimated hand mesh, estimated object mesh, estimated hand and object meshes. In the column of hand joints, we sample points from the ground truth object
meshes to reveal the relationship between our estimated hand pose and the object. Note that we changed scales in the visualization.

Hand-object

meshes Hand joints and object points

Images

e g

Fig. 9. Qualitative visualization of our method on the HIC dataset. We use
the skeleton with opaque color to represent the estimated hand joints and the
skeleton in semi-transparent color to represent the ground truth. Besides, the
green points are sampled from the ground truth object meshes and the red
points are sampled from the estimated object meshes.

position of the hand and the object is difficult to recover
accurately. These problems may be addressed by improving
the object representation with more shape priors and reasoning
the spatial relationship between the hand and the object.
Shape prior has been proved to be very helpful for 3D recon-
struction, both for rigid shape [85] and non-rigid object [20].
In our setting, the object tends to be occluded and the category
is unknown, which makes the 3D object reconstruction very
challenging. Unlike the category-specific object reconstruction
which can use the category information [86], [87], the hand
usually interacts with different objects whose shape priors
are not shared. Recent works [34], [88] estimate object pose
and use the pre-defined shape of each object to represent
the object surface. Although the pre-defined shape guarantees
the accuracy of the output object, it is impossible to get

| Hand Object Hand-object Hand-object meshes
mages . . .
meshes meshes meshes (different viewpoints)
® ™~ B @ S ae

) P @®N\ v
L ¢ @ ¢ N\
> 0 BHE ¢ P

Fig. 10. Failure cases of our method on the ObMan dataset. From first row
to second row, the shape of the invisible part is inaccurate (as circled in red).
From third row to fourth row, the relative position between hand and object
is inaccurate, which usually occurs when fingers covers the object.

every object mesh in practical applications. Without knowing
any object category and shape prior, our method (as well
as [14]) can acquire a reasonable object surface and reveal the
hand-object spatial relationship. Future work will reasonably
introduce some shape priors to improve the reconstruction
performance.

Reasoning hand-object spatial relationship in 2D or 3D
space could also benefit the task. The mesh-based methods
(this work and [14]) use contact loss to learn more reasonable
surfaces in hand-object interaction, and [88] optimizes the
output hand and object meshes according to their spatial
relationship. Apart from refining the output in 3D space,
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Fig. 11. Qualitative visualization of our method on the ObMan dataset. From left to right: input, estimated hand and object meshes (3 columns for 3 different
views), estimated 3D hand joints (3 columns for 3 different views). In the columns of hand joints, we use the skeleton with opaque color to represent the
estimated hand joints and the skeleton in semi-transparent color to represent the ground truth. Besides, the green points are sampled from the ground truth

object meshes and the red points are sampled from the estimated object meshes. Note that scales are changed in the visualization.
it would be more helpful to detect the hand-object interaction
in the 2D image space, and then combine the 2D results to

reasoning the hand-object relationship in 2D could also be
perform 3D hand-object reconstruction.

helpful. When the environment is noisy, it is difficult for the
network to determine which object is interacting with the hand,
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VI. CONCLUSION

To handle the challenging task of joint 3D reconstruction
of the hand-object image, we present an end-to-end feature
fusion network to recover 3D shapes of hand and object.
We introduce a depth estimation module to predict the depth
map from the input RGB to enhance the spatial attribute.
To jointly consider the hand and the object branches to extract
better features for later reconstruction, we propose to connect
the two branches and fuse their latent representations with
a feature fusion module. The proposed LSTM feature fusion
module along with several common alternatives have been
studied. We demonstrate that the cross-branch information is
helpful for shape reconstruction and that the proposed LSTM
feature fusion block is more effective to enhance the object
feature after comparing multiple feature fusion strategies.
Experimental results on both synthetic and real-world datasets
show that our method outperforms the previous work by a
large margin. As recommended above, future research could
explore other cooperation methods and more efficient inter-
mediate representation to achieve better joint reconstruction.
We also believe that in addition to investigating cooperation
between the hand and the object, research should also be
conducted to find cooperation and relationships among more
items such as two hands and many objects.
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