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Abstract

Reconstructing a 3D hand from a single-view RGB im-

age is challenging due to various hand configurations and

depth ambiguity. To reliably reconstruct a 3D hand from

a monocular image, most state-of-the-art methods heav-

ily rely on 3D annotations at the training stage, but ob-

taining 3D annotations is expensive. To alleviate reliance

on labeled training data, we propose S2HAND, a self-

supervised 3D hand reconstruction network that can jointly

estimate pose, shape, texture, and the camera viewpoint.

Specifically, we obtain geometric cues from the input image

through easily accessible 2D detected keypoints. To learn

an accurate hand reconstruction model from these noisy

geometric cues, we utilize the consistency between 2D and

3D representations and propose a set of novel losses to ra-

tionalize outputs of the neural network. For the first time,

we demonstrate the feasibility of training an accurate 3D

hand reconstruction network without relying on manual an-

notations. Our experiments show that the proposed self-

supervised method achieves comparable performance with

recent fully-supervised methods. The code is available at

https://github.com/TerenceCYJ/S2HAND.

1. Introduction

Reconstructing 3D human hands from a single image is

important for computer vision tasks such as hand-related

action recognition, augmented reality, sign language trans-

lation, and human-computer interaction [21, 33, 43]. How-

ever, due to the diversity of hands and the depth ambiguity

in monocular 3D reconstruction, image-based 3D hand re-

construction remains a challenging problem.

In recent years, we have witnessed fast progress in re-

covering 3D representations of human hands from images.

In this field, most methods were proposed to predict 3D

hand pose from the depth image [1, 10, 15, 22, 49] or the

∗Work done during an internship at Tencent AI Lab.
†Corresponding author: tuzhigang@whu.edu.cn
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Figure 1: Given a collection of unlabeled hand images, we learn a

3D hand reconstruction network in a self-supervised manner. Top:

the training uses a collection of unlabeled hand images and their

corresponding noisy detected 2D keypoints. Bottom: our model

outputs accurate hand joints and shapes, as well as vivid textures.

RGB image [2, 8, 24, 37, 52]. However, the surface infor-

mation is needed in some applications such as grasping an

object by a virtual hand [21], where the 3D hand pose rep-

resented by sparse joints is not sufficient. To better display

the surface information of the hand, previous studies pre-

dict the triangle mesh either via regressing per-vertex coor-

dinate [16, 29] or by deforming a parametric hand model

[19, 20]. Outputting such high-dimensional representation

from 2D input is challenging for neural networks to learn,

thus resulting in the training process relying heavily on 3D

annotations such as dense hand scans, model-fitted paramet-

ric hand mesh, or human-annotated 3D joints. Besides, the

hand texture is important in some applications, such as vivid

hands reconstruction in immersive virtual reality. But only

recently has a study exploring parametric texture estimation

in a learning-based hand recovery system [35], while most
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Approach Supervision Outputs

[35] 3DM, 3DJ, 2DKP, I, TI 3DM, 3DJ, Tex

[20, 30] 3DM, 3DJ 3DM, 3DJ

[48] 3DM*, 3DJ, 2DKP, 2DS, Syn 3DM, 3DJ

[16] 3DM*, 3DJ, 2DKP, D* 3DM, 3DJ

[29] 3DM*, D2DKP 3DM, 3DJ

[51] 3DJ, 2DKP, Mo 3DM, 3DJ

[3, 7, 50] 3DJ, 2DKP, 2DS 3DM, 3DJ

[52] 3DJ, 2DKP, 2DS 3DJ

[24] 3DJ, 2DKP 3DJ

[4] 3DJ*, 2DKP, 2DS 3DM, 3DJ, Tex

[37] 3DJ*, 2DKP 3DJ

[8] 2DKP, D 3DJ

Ours D2DKP, I 3DM, 3DJ, Tex

Table 1: A comparison of some representative 3D hand recovery

approaches with highlighting the differences between the supervi-

sion and the outputs. We use the weakest degree of supervision and

output the most representations. 3DM: 3D mesh, 3DJ: 3D joints,

I: input image, TI: an additional set of images with clear hand tex-

ture, Tex: texture, 2DKP: 2D keypoints, 2DS: 2D silhouette, D:

depth, D2DKP: detected 2D keypoints, Syn: extra synthetic se-

quence data, Mo: extra motion capture data. * indicates that the

study uses multiple datasets for training, and at least one dataset

used the supervision item.

previous works do not consider texture modeling.

Our key observation is that the 2D cues in the image

space are closely related to the 3D hand model in the real

world. The 2D hand keypoints contain rich structural infor-

mation, and the image contains texture information. Both

are important for reducing the use of expensive 3D annota-

tions but have not been investigated much. In this way, we

could directly use 2D annotations and the input image to

learn the structural and texture representations without us-

ing 3D annotations. However, it is still labor-consuming to

annotate 2D hand keypoints. To completely save the cost

of manual annotation, we propose to extract some geomet-

ric representations from the unlabeled image to help shape

reconstruction and use the texture information contained in

the input image to help texture modeling.

Motivated by the above observations, this work seeks to

train an accurate and robust 3D hand reconstruction net-

work only using supervision signals obtained from the in-

put images and eliminate all manual annotations, which is

the first attempt in this task. To this end, we use an off-the-

shelf 2D keypoint detector [9] to produce some noisy 2D

keypoints and supervise the hand reconstruction by these

noisy detected 2D keypoints and the input image. To bet-

ter achieve this goal, there are several issues that need to

be addressed. First, how to efficiently use joint-wise 2D

keypoints to supervise the ill-posed monocular 3D hand re-

construction? Second, since our setting does not use any

ground truth annotation, how do we handle the noise in the

2D detection output?

To address the first issue, a model-based autoencoder is

presented to estimate 3D joints and shape, where the output

3D joints are projected into image space and forced to align

with the detected keypoints during training. However, if we

only align keypoints in image space, invalid hand poses of-

ten occur. This may be an invalid 3D hand configure that

could be projected to be the correct 2D keypoints. Also,

2D keypoints cannot reduce the scale ambiguity of the pre-

dicted 3D hand. Thus, we design a series of priors em-

bedded in the model-based hand representations to help the

neural network output hand with a reasonable pose and size.

To address the second issue, a trainable 2D keypoint es-

timator and a novel 2D-3D consistency loss are proposed.

The 2D keypoint estimator outputs joint-wise 2D keypoints

and the 2D-3D consistency loss links the 2D keypoint esti-

mator and the 3D reconstruction network to make the two

mutually beneficial to each other during the training. In ad-

dition, we find that the detection accuracy of different sam-

ples varies greatly, thus we propose to distinguish each de-

tection item to weigh its supervision strength accordingly.

In summary, we present a S
2
HAND (self-supervised

3D hand reconstruction) model which enables us to train a

neural network that can predict 3D pose, shape, texture, and

camera viewpoint from a hand image without any ground

truth annotation, except that we use the outputs from a 2D

keypoint detector (Fig. 1).

Our main contributions are summarized as follows:

• We present the first self-supervised 3D hand recon-

struction network, which accurately outputs 3D joints,

mesh, and texture from a single image, without using

any annotated training data.

• We exploit an additional trainable 2D keypoint estima-

tor to boost the 3D reconstruction through a mutual

improvement manner, in which a novel 2D-3D consis-

tency loss is proposed.

• We introduce a hand texture estimation module to learn

vivid hand texture through self-supervision.

• We benchmark self-supervised 3D hand reconstruction

on some currently challenging datasets, where our self-

supervised method achieves comparable performance

to previous fully-supervised methods.

2. Related Work

In this section, we review previous works that are related

to our approach. Our focus is on model-based 3D hand pose

and shape estimation, and 3D reconstruction with limited

supervision. For more work on 3D pose estimation, please

refer to [1, 16, 37]. Below and in Table 1, we compare our

contribution with prior works.

Model-based Hand Pose and Shape Estimation. Many

hand models have been proposed to approximate hand

shape via a parametric model [5, 26, 36, 42]. In this pa-

per, we employ a hand model named MANO [36] that maps

pose and shape parameters to a triangle mesh [7, 11, 20, 53].
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Figure 2: Overview of the proposed framework. Our 3D reconstruction network decomposes an input image I into pose, shape, viewpoint,

texture, and lighting. The network is trained to reconstruct the input hand image and align with the detected 2D keypoints without extra

ground truth annotation. We also adopt an additional trainable 2D keypoint estimator for joint-wise 2D keypoint estimation, which is

supervised by the detected 2D keypoints as well. If the 2D keypoint estimator is enabled, a 2D-3D consistency function is introduced to

link the 2D and 3D components for mutual improvement. During the inference, only the 3D reconstruction network is utilized. The “Input

Image I” and “Detected 2D Keypoints Jde” on the right side of this figure are used to calculate losses.

Because the parametric model contains abundant struc-

ture priors of human hands, recent works integrate hand

model as a differentiable layers in neural networks [3, 4,

7, 19, 20, 45, 51, 53]. Among them, [3, 45, 51] output a

set of intermediate estimations, like segmentation mask and

2D keypoints, and then maps these representations to the

MANO parameters. Different from them, we aim at demon-

strating the feasibility of a self-supervised framework using

an intuitive autoencoder. We additionally output 2D key-

point estimation from another branch and use it only dur-

ing training to facilitate 3D reconstruction. More generally,

recent methods [4, 7, 19, 20, 53] directly adopt an autoen-

coder that couples an image feature encoding stage with a

model-based decoding stage. Unlike [19, 20], we focus on

hand recovery and do not use any annotation about objects.

More importantly, the above methods use 3D annotations

as supervision, while the proposed method does not rely on

any ground truth annotations.

3D Hand Pose and Shape Estimation with Limited Su-

pervision. 2D annotation is cheaper than 3D annotation,

but it is difficult to deal with the ambiguity of depth and

scale. [8] use a depth map to perform additional weak

supervision to strengthen 2D supervision. [37] proposes

biomechanical constraints to help the network output feasi-

ble 3D hand configurations. [32] detects 2D hand keypoints

and directly fits a hand model to the 2D detection. [29]

gathers a large-scale dataset through an automated data col-

lection method similar to [32] and then uses the collected

mesh as supervision. In this work, we limit biomechani-

cal feasibility by introducing a set of constraints on the skin

model instead of only impose constraints on the skeleton

as [37]. In contrast to [8, 29], our method is designed to

verify the feasibility of (noisy) 2D supervision and do not

introduce any extra 2.5D or 3D data.

Self-supervised 3D Reconstruction. Recently, there are

methods that propose to learn 3D geometry from monoc-

ular image only. For example, [47] proposes an unsuper-

vised approach to learn 3D deformable objects from raw

single-view images, but they assume the object is perfectly

symmetric, which is not the case in the hand reconstruction.

[17] removes out keypoints from supervision signals, but

it uses ground truth 2D silhouette as supervision and only

deals with categories with small intra-class shape differ-

ences, such as birds, shoes, and cars. [44] proposes a depth-

based self-supervised 3D hand pose estimation method, but

the depth image provides much more strong evidence and

supervision than the RGB image. Recently, [12, 40, 41] pro-

pose self-supervised face reconstruction with the use of 3D

morphable model of face (3DMM) [6] and 2D landmarks

detection. Our approach is similar to them, but the hand is

relatively non-flat and asymmetrical when compared with

the 3D face, and the hand suffers from more severe self-

occlusion. These characteristics make this self-supervised

hand reconstruction task more challenging.

Texture Modeling in Hand Recovery. [13, 14] exploit

shading and texture information to handle the self-occlusion

in the hand tracking system. Recently, [35] uses princi-

pal component analysis (PCA) to build a parametric texture

model of hand from a set of textured scans. In this work,

we try to model texture from self-supervised training with-

out introducing extra data, and further investigate whether

the texture modeling helps with the shape modeling.

From the above analysis and comparison of related work,

we believe that self-supervised 3D hand reconstruction is
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feasible and significant, but to the best of our knowledge,

no such idea has been studied in this field. In this work, we

fill this gap and propose the first self-supervised 3D hand

reconstruction network, and prove the effectiveness of the

proposed method through experiments.

3. Method

Our method enables end-to-end learning of a 3D hand

reconstruction network in a self-supervised manner, as il-

lustrated in Fig. 2. To this end, we use an autoencoder that

receives an image of a hand as input and outputs hand pose,

shape, texture, and camera viewpoint (Section 3.1 and 3.2).

We generate multiple 2D representations in image space

(Section 3.3) and design a series of loss functions and reg-

ularization terms for network training (Section 3.4). In the

following, we describe the proposed method in detail.

3.1. Deep Hand Encoding

Given a image I containing a hand, the network first uses

an EfficientNet-b0 backbone [39] to encode the image into

a geometry semantic code vector x and a texture semantic

code vector y. The geometry semantic code vector x pa-

rameterizes the hand pose θ ∈ R
30, shape β ∈ R

10, scale

s ∈ R
1, rotation R ∈ R

3 and translation T ∈ R
3 in a uni-

fied manner: x = (θ, β, s, R, T ). The texture semantic code

vector y parameterizes the hand texture C ∈ R
778×3 and

scene lighting L ∈ R
11 in a unified manner: y = (C,L).

3.2. Modelbased Hand Decoding

Given the geometry semantic code vector x and the tex-

ture semantic code vector y, our model-based decoder gen-

erates a textured 3D hand model in the camera space. In the

following, we describe the used hand model and decoding

network in detail.

Pose and Shape Representation. The hand surface is

represented by a manifold triangle mesh M ≡ (V, F ) with

n = 778 vertices V = {vi ∈ R
3|1 ≤ i ≤ n} and faces

F . The faces F indicates the connection of the vertices in

the hand surface, where we assume the face topology keeps

fixed. Given the mesh topology, a set of k = 21 joints

J = {ji ∈ R
3|1 ≤ i ≤ k} can be directly formulated

from the hand mesh. Here, the hand mesh and joints are

recovered from the pose vector θ and the shape vector β

via MANO which is a low-dimensional parametric model

learned from more than two thousand 3D hand scans [36].

3D Hand in Camera Space. After representing 3D hand

via MANO hand model from pose and shape parameters,

the mesh and joints are located in the hand-relative coordi-

nate systems. To represent the output joints and mesh in the

camera coordinate system, we use the estimated scale, rota-

tion and translation to conserve the original hand mesh M0

and joints J0 into the final representations: M = sM0R+T

and J = sJ0R+ T .

Texture and Lighting Representation. We use per-

vertex RGB value of n = 778 vertices to represent the tex-

ture of hand C = {ci ∈ R
3|1 ≤ i ≤ n}, where ci yields

the RGB values of vertex i. In our model, we use a sim-

ple ambient light and a directional light to simulate lighting

conditions [25]. The lighting vector L parameterizes am-

bient light intensity la ∈ R
1, ambient light color lac ∈ R

3,

directional light intensity color ld ∈ R
1, directional light

color ldc ∈ R
3, and directional light direction nd ∈ R

3 in a

unified representation: L = (la, lac , l
d, ldc , n

d).

3.3. Represent Hand in 2D

A set of estimated 3D joints within the camera scope

can be projected into the image space by camera projection.

Similarly, the output textured model can be formulated into

a realistic 2D hand image through a neural renderer. In ad-

dition to the 2D keypoints projected from the model-based

3D joints, we can also estimate the 2D position of each key-

point in the input image. Here, we represent 2D hand in

three modes and explore the complementarity among them.

Joints Projection. Given a set of 3D joints in camera co-

ordinates J and the intrinsic parameters of the camera, we

use camera projection Π to project 3D joints into a set of

k = 21 2D joints Jpro = {jproi ∈ R
2|1 ≤ i ≤ k}, where

j
pro
i yields the position of the i-th joint in image UV coor-

dinates: Jpro = Π(J).
Image Formation. A 3D mesh renderer is used to con-

serve the triangle hand mesh into a 2D image, here we use

an implementation1 of [25]. Given the 3D mesh M , the tex-

ture of the mesh C and the lighting L, the neural renderer ∆
can generate a silhouette of hand Sre and a color image Ire:

Sre, Ire = ∆(M,C,L).
Extra 2D Joint Estimation. Projecting model-based 3D

joints into 2D helps the projected 2D keypoints retain

structural information, but at the same time gives up the

independence of each key point. In view of this mat-

ter, we additionally use a 2D keypoint estimator to di-

rectly estimate a set of k = 21 independent 2D joints

J2d = {j2di ∈ R
2|1 ≤ i ≤ k}, where j2di indicates the po-

sition of the i-th joint in image UV coordinates. In our 2D

keypoint estimator, a stacked hourglass network [31] along

with an integral pose regression [38] is used. Note that the

2D hand pose estimation module is optionally deployed in

the training period and is not required during the inference.

3.4. Training Objective

Our overall training loss E consists of three parts includ-

ing 3D branch loss E3d, 2D branch loss E2d, and 2D-3D

consistency loss Econ:

E = w3dE3d + w2dE2d + wconEcon (1)

1https://github.com/daniilidis-group/neural_renderer
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Note, E2d and Econ are optional and only used when the

2D estimator is applied. The constant weights w3d, w2d and

wcon balance the three terms. In the following, we describe

these loss terms in detail.

3.4.1 Losses of the 3D Branch

To train the model-based 3D hand decoder, we enforce geo-

metric alignment Egeo, photometric alignment Ephoto, and

statistical regularization Eregu:

E3d = wgeoEgeo + wphotoEphoto + wreguEregu (2)

Geometric Alignment. We propose a geometric alignment

loss Egeo based on the detected 2D keypoints which are ob-

tained at an offline stage through an implementation2 of [9].

The detected 2D keypoints L = {(jdei , coni)|1 ≤ i ≤ k}
allocate each keypoint with a 2D position jdei ∈ R

2 and a

1D confidence coni ∈ [0, 1]. The geometric alignment loss

in the 2D image space consists of a joint location loss Eloc

and a bone orientation loss Eori. The joint location loss

Eloc enforces the projected 2D keypoints Jpro to be close

to its corresponding 2D detections Jde, and the bone orien-

tation loss Eori enforces the m = 20 bones of these two

sets of keypoints to be aligned.

Eloc =
1

k

k∑

i=1

coniLSmoothL1(j
de
i , j

pro
i ) (3)

Eori =
1

m

m∑

i=1

conbone
i ‖ νdei − ν

pro
i ‖

2

2 (4)

Here, a SmoothL1 loss [23] is used in Eq. 3 to make the

loss term to be more robust to local adjustment since the

detection keypoints are not fit well with the MANO key-

points. In Eq. 4, νdei and ν
pro
i are the normalized i-th bone

vector of the detected 2D joints and the projected 2D joints,

respectively, and conbone
i is the product of the confidence

of the two detected 2D joints of the i-th bone. The overall

geometric alignment loss Egeo is the weighted sum of Eloc

and Eori with a weighting factor wori:

Egeo = Eloc + woriEori (5)

Photometric Consistency. For the image formation, the

ideal result is the rendered color image Ire matches the

foreground hand of the input I . To this end, we employ a

photometric consistency which has two parts, the pixel loss

Epixel is computed by averaging the least absolute deviation

(L1) distance for all visible pixels to measure the pixel-wise

difference, and the structural similarity (SSIM) loss ESSIM

is the structural similarity between the two images [46].

Epixel =
consum

| Sre |

∑

(u,v)∈Sre

‖ Iu,v − Ireu,v ‖
2

(6)

2https://github.com/Hzzone/pytorch-openpose
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Figure 3: (A) Joint skeleton structure. (B) A sample of bone ro-

tation angles. The five bones (
−→
01,

−→
05,

−→
09,

−→
013,

−→
017) on the palm are

fixed. Each finger has 3 bones, and the relative orientation of each

bone from its root bone is represented by azimuth, pitch, and roll.

ESSIM = 1− SSIM(I ⊙ Sre, Ire) (7)

Here, the rendered silhouette Sre is used to get the fore-

ground part of the input image for loss computation. In

Eq. 6, we use consum, which is the sum of the detection

confidence of all keypoints, to distinguish different training

samples. This is because we think that low-confidence sam-

ples correspond to ambiguous texture confidence, e.g., the

detection confidence of an occluded hand is usually low.

The photometric consistency loss Ephoto is the weighted

sum of Epixel and ESSIM by a weighting factor wSSIM .

Ephoto = Epixel + wSSIMESSIM (8)

Statistical Regularization. During training, to make the

results plausible, we introduce regularization terms, in-

cluding shape regularization Eβ , texture regularization EC ,

scale regularization Es, and 3D joints regularization EJ .

The shape regularization term is defined as Eβ =‖ β − β̄ ‖
to encourage the estimated hand model shape β to be close

to the average shape β̄ = ~0 ∈ R
10. The texture regulariza-

tion EC is used to penalize outlier RGB values. The scale

regularization term Es is used to ensure the output hand is

of appropriate size, so as to help determine the depth of the

output in this monocular 3D reconstruction task. As for the

regularization constraints on skeleton EJ , we define feasi-

ble range for each rotation angle ai (as shown in Fig. 3B)

and penalize those who exceed the feasible threshold. We

provide more details about EC ,Es and EJ in the Appendix.

The statistical regularization Eregu is the weighted sum

of Eβ , EC , Es and EJ with weighting factors wC , ws and

wJ :

Eregu = Eβ + wCEC + wsEs + wJEJ (9)

3.4.2 2D-3D Consistency

Losses of the 2D Branch. For the 2D keypoint estima-

tor, we use a joint location loss as Eq. 3 with replacing the

10455



projected 2D joint j
pro
i by estimated 2D joint j2di :

E2d =
1

k

k∑

i=1

coniLSmoothL1(j
de
i , j2di ) (10)

2D-3D Consistency Loss. Since outputs of the 2D branch

and the 3D branch are intended to represent the same hand

in different spaces, they should be consistent when they are

transferred to the same domain. Through this consistency,

structural information contained in the 3D reconstruction

network can be introduced into the 2D keypoint estimator,

and meanwhile estimated 2D keypoints can provide joint-

wise geometric cues for 3D hand reconstruction. To this

end, we propose a novel 2D-3D consistency loss to link per

projected 2D joint j
pro
i with its corresponding estimated 2D

joint j2di :

Econ =
1

k

k∑

i=1

LSmoothL1(j
pro
i , j2di ) (11)

4. Experiments

In this section, we first present datasets and evalu-

ation metrics (Section 4.1), and implementation details

(Section 4.2). Then, we show the performance of our

method and conduct comprehensive analysis (Section 4.3

and 4.4).

4.1. Datasets and evaluation metrics

We evaluated our method on two challenging real

datasets, both of which evaluate 3D joints and 3D meshes.

The results are reported results through online submission

systems3,4.

FreiHAND. The FreiHAND dataset is a large-scale real-

world dataset,which contains 32,560 training samples and

3,960 test samples. For each training sample, one real RGB

image and extra three images with different synthetic back-

grounds are provided. Part of the sample is a hand grabbing

an object, but it does not provide any annotations for the

foreground object, which poses additional challenges.

HO-3D. The HO-3D dataset collects color images of a

hand interacting with an object. The dataset is made of 68

sequences, totaling 77,558 frames of 10 users manipulating

one among 10 different objects. The training set contains

66,034 images and the test set contains 11,524 images. The

objects in this dataset are larger than that in FreiHAND, thus

resulting in larger occlusions to hands.

Evaluation Metrics. We evaluate 3D hand reconstruction

by evaluating 3D joints and 3D meshes. For 3D joints, we

report the mean per joint position error (MPJPE) in the

3https://competitions.codalab.org/competitions/21238
4https://competitions.codalab.org/competitions/22485

Euclidean space for all joints on all test frames in cm and the

area under the curve (AUC) of the PCK AUCJ. Here, the

PCK refers to the percentage of correct keypoints, is plotted

using 100 equally spaced thresholds between 0mm to 50mm.

For 3D meshes, we report the mean per vertex position er-

ror (MPVPE) in the Euclidean space for all joints on all test

frames in cm and the AUC of the percentage of correct ver-

tex AUCV. We also compare the F-score [28] which is the

harmonic mean of recall and precision for a given distance

threshold. We report distance threshold at 5mm and 15mm

and report F-score of mesh vertices at 5mm and 15mm by F5

and F15. Following the previous works [18, 53], we com-

pare aligned prediction results with Procrustes alignment,

and all 3D results are evaluated by the online evaluation

system. For 2D joints, we report the MPJPE in pixel and

the curve plot of fraction of joints within distance.

4.2. Implementation

Pytorch [34] is used for implementation. For the 3D

reconstruction network, the EfficientNet-b0 [39] is pre-

trained on the ImageNet dataset. The 2D keypoint estimator

along with the 2D-3D consistency loss is optionally used.

If we train the whole network with the 2D keypoint esti-

mator, a stage-wise training scheme is used. We train the

2D keypoint estimator and 3D reconstruction network by

90 epochs separately, where E3d and E2d are used, respec-

tively. The initial learning rate is 10−3 and reduced by a

factor of 2 after every 30 epochs. Then we finetune the

whole network with E by 60 epochs with the learning rate

initialized to 2.5 × 10−4 and reduced by a factor of 3 after

every 20 epochs. We use Adam [27] to optimize the net-

work weights with a batch size of 64. We train our model

on two NVIDIA Tesla V100 GPUs, which takes around 36

hours for training on FreiHAND. We provide more details

in the Appendix.

4.3. Comparison with Stateoftheart Methods

We give comparison on FreiHAND with four recent

model-based fully-supervised methods [7, 20, 35, 53] and a

state-of-the-art weakly-supervised method [37] in Table 2.

Note that [30] is not included here since it designs an

advanced “image-to-lixel” prediction instead of directly

regress MANO parameters. Our approach focuses on pro-

viding a self-supervised framework with lightweight com-

ponents, where the hand regression scheme is still af-

fected by highly non-linear mapping. Therefore, we make

a fairer comparison with popular model-based methods

[7, 20, 35, 53] to demonstrate the performance of this self-

supervised approach. Without using any annotation, our ap-

proach outperforms [20, 53] on all evaluation metrics and

achieves comparable performance to [7, 35]. [37] only

outputs 3D pose, and its pose performance is slightly bet-

ter than our results on FreiHAND test set but with much
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Supervision Method AUCJ↑ MPJPE↓ AUCV↑ MPVPE↓ F5↑ F15↑

3D

[53](2019) 0.35 3.50 0.74 1.32 0.43 0.90

[20](2019) 0.74 1.33 0.74 1.33 0.43 0.91

[7](2019) 0.78 1.10 0.78 1.09 0.52 0.93

[35](2020) 0.78 1.11 0.78 1.10 0.51 0.93

2D [37](2020)* 0.78 1.13 - - - -

- Ours 0.77 1.18 0.77 1.19 0.48 0.92

Table 2: Comparison of main results on the FreiHAND test set. The per-

formance of our self-supervised method is comparable to the recent fully-

supervised and weakly-supervised methods. [37]* also uses synthetic training

data with 3D supervision.

Supervision Method AUCJ↑ MPJPE↓ AUCV↑ MPVPE↓ F5↑ F15↑

3D

[20](2019) - - - 1.30 0.42 0.90

[18](2020) - - - 1.06 0.51 0.94

[19](2020) 0.773 1.11 0.773 1.14 0.43 0.93

- Ours 0.773 1.14 0.777 1.12 0.45 0.93

Table 3: Comparison of main results on the HO-3D test set. Without using any

object information and hand annotation, our hand pose and shape estimation

method performs comparably with recent fully-supervised methods.
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Figure 4: A comparison of 2D keypoint sets used or

outputted at the training stage on FreiHAND. The frac-

tion of joints within distance is plotted. The average

2D distances in pixel are shown in the legend. Refer to

Section 4.4.2 for details.

more training data used including RHD dataset [52] (with

40,000+ synthetic images and 3D annotations) as well as

2D ground truth annotation of the FreiHAND.

In the hand-object interaction scenario, we compare with

three recent fully-supervised methods on HO-3D in Ta-

ble 3. Compared to the hand branch of [20], our self-

supervised results show higher mesh reconstruction perfor-

mance where we get a 14% reduction in MPVPE. Com-

pared with [19], which is a fully-supervised joint hand-

object pose estimation method, our approach obtains com-

parable joints and shape estimation results. [18] gets

slightly better shape estimation results than ours, which

may be due to it uses multi-frame joint hand-object pose

refinement and mesh supervision.

In Fig. 5, we show 2D keypoint detection from

OpenPose [9] and our hand reconstruction results of diffi-

cult samples. We also compare the reconstruction results

with MANO-CNN, which directly estimates MANO pa-

rameters with a CNN [53], but we modify its backbone to

be the same as ours. Our results are more accurate and ad-

ditionally with texture.

4.4. Ablation Study

4.4.1 Effect of Each Component

As presented in Table 4, we give evaluation results on

FreiHAND of settings with different components along

with corresponding loss terms used in the network. The

baseline only uses the 3D branch with Eloc and Eregu, then

we add Eori which helps the MPJPE and MPVPE decrease

by 19.5%. After adding the 2D branch with E2d and the 2D-

3D consistency constrain Econ, the MPJPE and MPVPE

further reduce by 4%. The Ephoto slightly improves the

pose and shape estimation results.

Input Image MANO-CNN Ours

Input Image OpenPose Ours

Figure 5: Qualitative comparison to OpenPose [9] and MANO-

CNN on the FreiHAND test set. For OpenPose, we visualize de-

tected 2D keypoints. For our method and MANO-CNN, we visu-

alize projected 2D keypoints and 3D mesh.

4.4.2 Comparison of Different 2D Keypoint Sets

In our approach, there are three sets of 2D keypoints, in-

cluding detected keypoints Jde, estimated 2D keypoints

J2d, and output projected keypoints Jpro, where Jde is used

as supervision terms while J2d and Jpro are output items.

In our setting, we use multiple 2D representations to boost

the final 3D hand reconstruction, so we do not advocate the

novelty of 2D hand estimation, but compare 2D accuracy in

the training set to demonstrate the effect of learning from

noisy supervision and the benefits of the proposed 2D-3D

consistency.

Although we use OpenPose outputs as the keypoint su-

pervision source (see OpenPose in Fig. 4), we get lower

overall 2D MPJPE when we pre-train the 2D and 3D

branches separately (see Predicted w/o 2D-3D and Pro-
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Losses
MPJPE↓ MPVPE↓ AUCJ↑ AUCV↑ F5↑ F15↑Eloc, Eregu Eori E2d, Econ Ephoto

X 1.54 1.58 0.696 0.687 0.387 0.852

X X 1.24 1.26 0.754 0.750 0.457 0.903

X X X 1.19 1.20 0.764 0.763 0.479 0.915

X X X X 1.18 1.19 0.766 0.765 0.483 0.917

Table 4: Ablation studies for different losses used in our method on the FreiHAND

testing set. Refer to Section 4.4.1 for details.

Dataset Method AUCJ↑ AUCV↑ F5↑ F15↑

FreiHAND
WSL 0.730 0.725 0.42 0.89

SSL 0.766 0.765 0.48 0.92

HO-3D
WSL 0.765 0.769 0.44 0.93

SSL 0.773 0.777 0.45 0.93

Table 5: Comparison of self-supervised results

and weakly-supervised results. Refer to Sec-

tion 4.4.3 for details.

jected w/o 2D-3D in Fig. 4). After finetuning these two

branches with 2D-3D consistency, we find both of them

gain additional benefits. After the finetuning, the 2D branch

(Predicted w/ 2D-3D) gains 5.4% reduction in 2D MPJPE

and the 3D branch (Projected w/ 2D-3D) gains 9.3% re-

duction in 2D MPJPE. From the curves, we can see that

2D keypoint estimation (including OpenPose and our 2D

branch) gets higher accuracy in small distance thresholds

while the regression-based methods (Projected w/o 2D-3D)

get higher accuracy with larger distance threshold. From

the curves, the proposed 2D-3D consistency can improve

the 3D branch in all distance thresholds, which verifies the

rationality of our network design.

4.4.3 Comparison with GT 2D Supervision

We compare the weak-supervised (WSL) scheme using

ground truth annotations with our self-supervised (SSL)

approach to investigate the ability of our method to han-

dle noisy supervision sources. Both settings use the same

network structure and implementation, and WSL uses the

ground truth 2D keypoint annotations whose keypoint con-

fidences are set to be the same. As shown in Table 5, our

SSL approach has better performance than WSL settings on

both datasets. We think this is because the detection confi-

dence information is embedded into the proposed loss func-

tions, which helps the network discriminate different accu-

racy in the noisy samples. In addition, we find that the SSL

method outperforms the WSL method in a smaller ampli-

tude on HO-3D (by 1.0%) than that on FreiHand (by 4.9%).

We think this is because the HO-3D contains more occluded

hands, resulting in poor 2D detection results. Therefore, we

conclude that noisy 2D keypoints can supervise shape learn-

ing for the hand reconstruction task, while the quality of the

unlabeled image also has a certain impact.

5. Discussion

While our method results in accurate and vivid hand

reconstruction in many challenging scenarios (e.g., hand-

object interaction, self-occlusion), we also observe failure

cases as shown in Fig. 6. The reconstruction accuracy is

lower in the extreme pose, severe occlusion, and extreme

viewpoint, partly due to poor supervision from single-view

2D keypoint detection. The texture modeling under com-

plex skin reflections is inaccurate, which may be due to the

fact that it is difficult for us to accurately simulate com-

A: Extreme Pose B: Severe Occlusion

D: Complex Skin ReflectionC: Extreme Viewpoint

Figure 6: Failure cases. We show input image, projected joints,

and 3D reconstruction. See Section 5 for details.

plex skin reflection using a simple illumination representa-

tion and a coarse hand mesh. As shown in the last line of

Table 4, the texture modeling cannot bring a marked im-

provement to the shape reconstruction, which is also the

case in [35]. This may be because the hand model [36] is

not meticulous enough, and the skin reflection simulation is

not accurate.

6. Conclusion

We have presented a self-supervised 3D hand reconstruc-

tion network that can be trained from a collection of unla-

beled hand images. The network encodes the input image

into a set of meaningful semantic parameters that repre-

sent hand pose, shape, texture, illumination, and the cam-

era viewpoint, respectively. These parameters can be de-

coded into a textured 3D hand mesh as well a set of 3D

joints, and in turn, 3D mesh and joints can be projected into

2D image space, which enables our network to be end-to-

end learned. Our network performs well under noisy su-

pervision sources from 2D hand keypoint detection while

is able to obtain accurate 3D hand reconstruction from a

single-view hand image. Experimental results show that

our method achieves comparable performance with state-

of-the-art fully-supervised methods. As for the future study,

it is possible to extend the parametric hand mesh to other

representations (e.g., signed distance function) for more de-

tailed hand surface representation. We also believe that

more accurate skin reflection modeling can help hand re-

construction with higher fidelity.
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