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Abstract
Current studies have shown that the spatial‐temporal graph convolutional network (ST‐
GCN) is effective for skeleton‐based action recognition. However, for the existing ST‐
GCN‐based methods, their temporal kernel size is usually fixed over all layers, whichmakes
them cannot fully exploit the temporal dependency between discontinuous frames and
different sequence lengths. Besides, most of these methods use average pooling to obtain
global graph feature from vertex features, resulting in losing much fine‐grained informa-
tion for action classification. To address these issues, in this work, the authors propose a
novel spatial attentive and temporal dilated graph convolutional network (SATD‐GCN). It
contains two important components, that is, a spatial attention pooling module (SAP) and a
temporal dilated graph convolution module (TDGC). Specifically, the SAP module can
select the human body joints which are beneficial for action recognition by a self‐attention
mechanism and alleviates the influence of data redundancy and noise. The TDGC module
can effectively extract the temporal features at different time scales, which is useful to
improve the temporal perception field and enhance the robustness of the model to
different motion speed and sequence length. Importantly, both the SAP module and the
TDGC module can be easily integrated into the ST‐GCN‐based models, and significantly
improve their performance. Extensive experiments on two large‐scale benchmark datasets,
that is, NTU‐RGB + D and Kinetics‐Skeleton, demonstrate that the authors’ method
achieves the state‐of‐the‐art performance for skeleton‐based action recognition.

1 | INTRODUCTION

Human action recognition, which has a wide range of appli-
cations in intelligent video surveillance, human‐machine
interaction, medical service, and so forth, is still a challenging
and unsolved problem [1–4]. Human action recognition based
on the RGB appearance is usually easily affected by the
complex background, illumination change, occlusion, and
other factors. In recent years, more and more research have
been carried out on skeleton‐based action recognition as it is
robust against changes in motion speeds, body scales, camera
viewpoints, and interference of backgrounds. Moreover,
increasingly human skeleton data is collected by depth cameras
and human pose estimation algorithms [5,6], which provides

sufficient data for skeleton‐based action recognition study and
application. The skeleton data represents the human action as a
sequence of 2D or 3D coordinates of the major body joints, so
it is crucial to extract discriminative features in both spatial and
temporal domains for action recognition.

The earliest attempts of skeleton‐based action recognition
treat all the body joints in sequence as a feature vector and use
a classifier such as SVM to classify the feature vector [7]. These
methods rarely explore the spatial and temporal dependencies
of the skeleton sequence and cannot capture the fine‐grained
information of human action. Owing to the rapid progress of
deep learning, models based on convolutional neural networks
(CNN) and recurrent neural networks (RNN) have become the
mainstream, which normally considers the coordinates of
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human joints as pseudo‐images or vector sequences [8–11].
Although these methods have the ability to exploit spatial‐
temporal information, they are only suitable for dealing with
the regular data in Euclidean space and are not suitable for
handling the graph data in non‐Euclidean space. The skeleton
is naturally structured as a graph in a non‐Euclidean space with
the characteristic that the joints as vertexes and their natural
connections as edges.

To better leverage the data in the non‐Euclidean space,
some works process data directly on the graph structure
[12,13]. Yan et al. firstly applied the graph convolutional
network (GCN) to model the skeleton‐based action recogni-
tion [14]. They proposed a spatial‐temporal graph convolu-
tional network (ST‐GCN), which constructs a spatial graph
based on the natural connections of joints in the human body
and adds the temporal edges between corresponding joints in
consecutive frames. ST‐GCN can aggregate the information
of graph vertexes in both spatial and temporal domains to
obtain a discriminative feature representation of vertexes, and
then uses an average pooling layer on both spatial and tem-
poral domains to get the feature of spatial‐temporal graph for
action classification. Based on the ST‐GCN, many variants
were explored [17,29,31], which typically introduce some in-
cremental modules, for example the adaptive adjacency matrix
[17], the actional‐structural module [29], and the variable
temporal module [31], to enhance the network capacity.
However, there are two drawbacks of the ST‐GCN based
methods: (1) they only consider the temporal dependency
between adjacent frames on the time sequence, causing them
cannot fully exploit the temporal dependency between frames
in a multi‐scale time span. Besides, the pose variation between
adjacent frames is small, which usually cannot reflect the
motion information of human action. (2) ST‐GCN‐based
methods simply use average pooling to obtain the global graph
feature representation from vertex feature representations,
without paying attention to key joints and key frames in the
skeleton sequence, thus losing a lot of fine‐grained informa-
tion for action classification. For example, we should pay more
attention to the long‐term variations of the human hands and
upper limbs for the actions ‘reading’ and ‘writing’. Because in
the process of reading or writing, the human body is mainly
moving with its upper limbs in a slow speed. In contrast, for
‘running’ and ‘hopping’, we should pay more attention to the
instantaneous movement of human lower limbs. In other
words, for different actions, different parts of the human body
have different degrees of importance, and their movement
speed is also very different. Therefore, how to fully exploit the
attentive multi‐scale spatial‐temporal dependency of human
body joints is one of the crucial problems in skeleton‐based
action recognition.

To address this issue, a novel spatial attentive and temporal
dilated graph convolutional network (SATD‐GCN) is pro-
posed in this work. Specifically, in the spatial domain, we
propose a spatial attention pooling (SAP) module, which uses
the self‐attention mechanism to pick important vertexes and
remove unimportant vertexes in the graph. In this way, it
carries out a spatial attention pooling in the process of spatial

graph convolution, which avoids the loss of fine‐gained in-
formation and reduces the impact of noise caused by the
average pooling. It should be noted that although unimportant
vertexes are removed, their useful information is preserved.
Because before pooling, their useful features have been
aggregated on other vertexes by the spatial graph convolution.
In the temporal domain, to give the network multi‐scale tem-
poral perception field, we propose a temporal dilated graph
convolution (TDGC) module. Similar to the dilated convolu-
tion, TDGC extracts the non‐adjacent graph sequence with a
multi‐scale interval to expand the temporal receptive field.
Both the SAP module and the TDGC module can be easily
embedded into the spatial‐temporal graph convolution net-
works, and significantly improves the performance (see
Section 5). Although the latest research on skeleton‐based
action recognition also uses a spatial‐temporal attention
mechanism to refine the extracted features [15,16], in contrast,
the purposed SAP module can not only refine features but also
reduce the number of graph vertexes properly and alleviate the
influence of data redundancy and noise. Moreover, following
the work of 2s‐AGCN [17], we also use the length and di-
rection of bones as the second‐order information to construct
a two‐stream (i.e. joint stream and bone stream) SATD‐GCN
to boost the accuracy.

The main contribution of this work lies in three folds:

� A spatial attention pooling module is designed to adaptively
capture important vertexes and remove unimportant ver-
texes in the graph, which is effective to reduce the number
of graph vertexes and enhance the extraction of discrimi-
native vertex features.

� A temporal dilated graph convolution module is exploited to
expand the receptive field of temporal graph convolution,
which can adapt to different speed of joint movement in
different actions and learn temporal features from subtle
motion to large‐scale motion hierarchically.

� A two‐stream spatial attentive and temporal dilated graph
convolutional network is constructed by combining the SAP
module and the TDGC module, which outperforms the
state‐of‐the‐art skeleton‐based action recognition methods.

2 | RELATED WORK

2.1 | Skeleton‐based action recognition

Conventional skeleton‐based action recognition methods
usually extracted handcrafted features, that is, relative positions
of joints [7] or rotations, translations between body parts [18],
etc., to represent human motion. However, these methods
cannot effectively extract the spatial‐temporal correlation of
skeleton sequence in a wide range, thus the performance of
these handcrafted‐feature‐based methods is unsatisfied. With
the collection of skeleton data becomes easy and the devel-
opment of deep learning technology, using the deep networks
for data‐driven feature learning has become the mainstream for
skeleton‐based action recognition. Shahroudy et al. [19] treat
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3D coordinates of all joints of the human body in time
sequence as a vector sequence and then use RNN to extract
the temporal information. Similar to [19], many RNN‐based
methods have been proposed and good results obtained
[10,11,20–22]. However, in these RNN‐based methods, the
graph structure of human body joints is directly regarded as
vectors, leading to the spatial structure information of the
human body is ignored. To solve this problem, CNN‐based
methods have been studied to model the skeleton data as a
pseudo‐image on the manually designed transformation rules
[8,9,23–26], which do not directly process the graph structure
skeleton data in the non‐Euclidean space and increase a large
amount of redundant computation.

Recently, GCN‐based methods promote the performance
of the skeleton‐based action recognition to a higher level
[14,17,27–31], which construct a skeleton graph whose vertices
are joints and edges are bones and apply the GCN to extract
correlated features. The existed GCN‐based methods can be
roughly divided into two categories. The first type of approach
leverages GCN to extract spatial correlation of the skeleton
graph and then uses RNN to capture the temporal correlation
[16,30]. The second type of approach uses spatial‐temporal
GCN to process the graph sequence directly [14,17,29,31],
which can be well adapted to the non‐Euclidean space data in
time sequence and achieves the state‐of‐the‐art performance.
Yan et al. [14] first proposed the ST‐GCN, in which each ST‐
GCN layer constructs the spatial characteristic with a graph
convolutional operation and models the temporal dynamic
with a temporal convolutional operation. Li et al. [29] intro-
duced an encoder‐decoder structure to capture richer joint
correlations and action‐specific latent vertexes dependencies.
Wen et al. [31] explored a motif‐based graph convolution to
encode the hierarchical spatial structure and applied a variable
temporal dense block to exploit local temporal information
over different ranges of human skeleton sequences. Although
these studies optimize the extraction of spatial‐temporal
features of the skeleton graph sequence, the pooling method
they used in both the spatial domain and the temporal
domain is simple, resulting in some important features
cannot be effectively retained and is vulnerable to noise. Be-
sides, these methods do not have the multi‐scale temporal
perception field, therefore they are unable to deal with
different length of the graph sequence and different speed of
the human body movement well. Following the GCN‐based
methods, our model combines the TDGC module and the
SAP module proposed to extract spatial‐temporal features
more effectively.

2.2 | Graph convolutional network

In the real world, many data are in the irregular non‐Euclidean
space such as the molecular structure [32], the transportation
network [33], the knowledge graph [46], and the skeleton graph
[14]. Therefore, how to improve the feature extraction ability
of the deep model in the non‐Euclidean space is a pressing
research topic. Scarselli et al. [34] first proposed a graph neural

network (GNN) to handle the graph structure data, as GNN is
a trainable model which is able to aggregate the vertex infor-
mation in terms of the manually designed rules in the graph
structure. Defferrard et al. [35] used the Fourier transform of
the graph structure data to expand the convolution operation
into the non‐Euclidean space and proposed a graph convolu-
tional network (GCN) for graph classification. Kipf et al. [36]
applied the GCN for semi‐supervised learning and verified the
validity of GCN. However, these deep learning methods
operate the graph structure data in the spectral domain, so the
computational speed is inefficient. Monti et al. [37] modified
the spectral domain GCN to construct a more effective spatial
domain GCN, which directly operates on the graph vertexes
and avoids the complex steps for example, the Fourier trans-
form and the Chebyshev polynomial approximation. Our work
also uses GCN to handle the skeleton‐based action recogni-
tion, and we follow the work of ST‐GCN [14] to extract the
feature of human body joints from both the spatial dimension
and temporal dimension.

3 | BACKGROUND

In this section, we introduce the basic background knowledge
of this work.

3.1 | Notations

We use G ¼ ðV ;E Þ to represent the skeleton graph, where
V is the set of n body joints and E is the set of m bones. We
consider the adjacency matrix of the skeleton graph as
A ∈ f0; 1gn�n, where Ai;j ¼ 1 if the i‐th and the j‐th joints are
connected and 0 otherwise. Let D ∈ ℝn�n be the diagonal
degree matrix, where Di;i ¼∑

j
Ai;j . Following the work of ST‐

GCN [14], we divide one root vertex and its one‐order
neighbours into three sets, including (1) the root vertex itself,
(2) the centripetal group, which is closer to the body barycentre
than the root, and (3) the centrifugal group, which is farther
away to the body barycenter than the root. In this way, A is
accordingly classified to be Aroot, Acentripetal and Acentrifugal,
which can better express the structural information of the
skeleton graph. We denote the partition group set as
P ¼ froot; centripetal; centrifugalg and ∑

p∈P
Ap ¼ A. Let

X ∈ ℝn�3�T be the 3D joint positions across T frames. Let
Xt ¼ X :;:;t ∈ ℝn�3 be the 3D joint positions at the t‐th frame,
which slices the t‐th frame in the last dimension of X .
Xi
t ¼ X i;:;t ∈ ℝ3 be the positions of the i‐th joint at the t‐th

frame.

3.2 | Spatial‐temporal GCN

ST‐GCN [14] consists of a series of ST‐GCN blocks. Each
block contains a spatial GCN layer followed by a temporal
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GCN layer, which can extract the spatial and temporal features
alternatingly. In the spatial dimension, the convolution opera-
tion on the skeleton graph is:

Xout ¼ ∑
p∈P

fAp XinWp; ð1Þ

where Xin ∈ ℝn�din and Xout ∈ ℝn�dout are the input and
output features of all joints in one frame respectively, and din
and dout is the channel dimension of them.
~Ap ¼Dp−1

2ApDp−1
2 ∈ ℝn�n is the normalized adjacency matrix

for each partition. Wp ∈ ℝdin�dout are the trainable weights for
each partition in the spatial GCN. In ST‐GCN, the adjacency
matrix A is manually defined according to the physical struc-
ture of human body, which cannot adaptively represent the
interdependence of different parts of human body in different
actions. For example, clapping hands, there is a connection
between two hands, but they are not physically connected.
Follow the work of 2s‐AGCN [17], we change Equation 1 to
the following form:

Xout ¼ ∑
p∈P
ðfAp þ Bp þ CpÞXinWp; ð2Þ

where Bp ∈ ℝn�n is a trainable adjacency matrix that can be
optimized together with other parameters in the training
process. There are no constraints on Bp, which means that
the graph is completely learned according to the training
data. Cp is a vertex‐dependent adjacency matrix which can
determine whether there is a connection between two ver-
texes and how strong the connection is. We calculate Cp as
follows:

Cp ¼ sof tmax
��

XinWP
φ
��

Wp
θ
T
Xin

T
��
; ð3Þ

where Wθ ∈ ℝdin�n and Wφ ∈ ℝdin�n are the trainable pa-
rameters of the embedding functions. sof tmax function
operates on each row of the matrix.

For the temporal dimension, since the corresponding
vertexes in continuous graph frames are linear structures, it
is straightforward to perform the temporal graph convolu-
tion similar to the classical convolution operation.
Concretely, we perform a 2D convolution on the output
feature map calculated by spatial convolution with a Kt � 1
kernel, where Kt is the kernel size of the temporal
dimension.

4 | SPATIAL ATTENTIVE AND
TEMPORAL DILATED GCN

In this section, we introduce the components of our proposed
spatial attentive and temporal dilated graph convolutional
network (SATD‐GCN) in detail.

4.1 | Model architecture

Our model consists of two streams, that is, a joint stream and a
bone stream. The joint stream takes human body joints as
graph vertexes and bones as graph edges to construct the
skeleton graph sequence, and the initial feature of the vertex is
its 3D coordinate corresponding to the human body joint. The
bone stream takes human bones as graph vertexes and joints as
graph edges, and the initial feature of the bone is the coordi-
nate of the target joint minus the coordinate of the source
joint. We define the joint, which closes to the centre of gravity
of the skeleton, as the source joint; and define the joint, which
is far away from the centre of gravity, as the target joint. For
example, given a bone with its source joint v1 ¼ ðx1; y1; z1Þ
and its target joint v2 ¼ ðx2; y2; z2Þ, the initial feature of the
bone is calculated as v2 − v1 ¼ ðx2 − x1; y2 − y1; z2 − z1Þ.
The overall architecture of the SATD‐GCN is shown in
Figure 1. Given a sample, we first calculate the data of bones
based on the data of joints. Then, the joint data and the bone
data are fed into the joint stream and the bone stream,
respectively. In the two‐stream network, we first apply five ST‐
GCN blocks to extract low‐level features of the vertexes. Then,
we apply two spatial and temporal dilated graph convolution
blocks (S‐TD‐GCN) with a dilation rate 1 followed by a ST‐
GCN block to extract the high‐level feature of the vertexes.
Next, we use two S‐TD‐GCN blocks with a dilation rate 2
followed by a spatial attention pooling block (SAP) with down‐
sampling rate 2 to further extract high‐level features and
capture the important vertexes while removing the unimpor-
tant vertexes. Finally, we apply the average pooling to a few of
the remaining important vertexes on both the spatial and
temporal domains. The sof tmax scores of the two streams are
combined to obtain the final score for the action label
prediction.

4.2 | Temporal dilated graph convolution
module

The spatial‐temporal GCN first aggregates vertex information
in the spatial domain based on the spatial adjacency of the
skeleton graph. With the help of multiple adaptive adjacency
matrices and the vertex subset partition, ST‐GCN can adapt to
different spatial correlations of human body joints. However,
in the temporal domain, ST‐GCN does not have the ability to
extract multi‐scale correlations of non‐adjacent frames. This
disadvantage makes the ST‐GCN cannot adapt to various
human actions which usually with different speed and time
span. In order to explore the time sequence information and
human motion feature more effectively, we propose a novel
temporal dilated graph convolution module (TDGC module).
As shown in Figure 2, we use the temporal convolution with a
continuous kernel to extract low‐level features. When to
extract high‐level features, we let the temporal kernels have
gaps, and we call the size of this gap is the ‘dilation rate’. By
using the temporal dilated graph convolution, our model can
learn the dependence between non‐adjacent frames, and
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significantly expands the temporal perception field. In addi-
tion, by gradually increasing the dilation rate, our model is able
to perceive the motion of human body at different time scales.
It should be noted that the TDGC module does not increase
the number of parameters and it can be easily combined with
the ST‐GCN based model. In our SATD‐GCN model, as
shown in Figure 1, we apply two spatial‐temporal dilated‐graph
convolution (S‐TD‐GCN) blocks with a dilation rate of 1 after
five ST‐GCN blocks. And then we add two S‐TD‐GCN blocks
with a dilation rate of 2 after one ST‐GCN block. Experiments
show that this kind of structure can extract temporal features
from subtle motion to large‐scale motion hierarchically.

4.3 | Spatial attention pooling module

In the large‐scale skeleton datasets that is NTU‐RGBD or
Kinetics‐Skeleton, there are some poor information joints,
such as the right and left ears which can make little contri-
bution to action recognition. On the other side, there are some
relatively important joints. For example, most of the actions
will have the movement information of the human body's left
and right hands or feet. The previous methods usually

compress vertex features by means of average pooling in both
the temporal domain and the spatial domain [14,17,29], which
will inevitably be losing important spatial‐temporal informa-
tion. To solve this problem, we propose a spatial attention
pooling module (SAP module). As can be seen from Figure 3,
the SAP module uses self‐attention mechanism to select the
important vertexes in the graph and remove the unimportant
vertexes. At the same time, before filtering vertexes, the SAP
module also utilizes the attention map to enhance the feature
of vertexes (Element‐wise multiplication). More specifically,
because the SAP module works on the spatial dimension, we
first use the temporal average pooling (T‐AvgPool) on the
skeleton graph sequence to reduce the temporal dimension to
one and get a feature map which has n� d dimension.
Furthermore, we use a fully connected layer (FC) followed by a
sigmoid function on the feature map to generate an attention
map for each vertex in the graph, which can be interpreted as
the relative importance given to vertex in the current graph.
The feature of the original graph vertex is multiplied by its
attention map to enhance the feature. We rank the attention
map from large to small, and filter row vectors of the adjacency
matrix according to the attention map by a down‐sampling rate
α. In this way, the original n� d dimensional adjacency matrix

F I GURE 1 The overall architecture of the proposed SATD‐GCN

F I GURE 2 The temporal dilated graph convolution
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becomes n
α� n dimensional. In the SAP module, the physical

connection structure of the human body no longer exists, so
we remove the physical structure adjacency matrix A and the
trainable adjacency matrix B, only retain the vertex‐dependent
adjacency matrix C in Eq. 2. Finally, we perform ST‐GCN
operation with the new adjacency matrix on the skeleton graph,
so the number of vertexes in the skeleton graph is reduced to n

α.
It should be noted that we do not directly filter the important
vertexes, but indirectly select the vertexes by filtering the ad-
jacency matrix, which can alleviate the non‐differentiable
problems caused by the selection operation and make the
model easy to train. In our SATD‐GCN, as shown in Figure 1,
we apply one SAP block with the down‐sampling rate two at
the end of the two streams, respectively.

5 | EXPERIMENT

Extensive experiments are conducted and analysed in this
section. Firstly, we introduce two large‐scale skeleton datasets,
namely NTU‐RGB + D [19] and Kinetics‐Skeleton [14]. Sec-
ondly, our model implementation details, and the training de-
tails are discussed. Thirdly, we perform an ablation study of
each component. Finally, our model is evaluated on these two
datasets to compare with state‐of‐the‐arts.

5.1 | Datasets

5.1.1 | NTU‐RGB + D

NTU‐RGB + D is a large in‐door‐captured dataset with an-
notated 3D joint coordinates for the human action recognition
task [19,47]. NTU‐RGB + D contains 56,000 action videos in
60 action classes, which are captured from 40 volunteers in
different age groups ranging from 10 to 35. Each action is

obtained by three cameras at the same height from different
viewpoints, and the provided annotations are given in the
camera coordinate system. There are 25 joints for each subject
in the skeleton sequences, while each action video has no more
than two subjects. It includes two settings: (1) Cross‐Subject
(CS) benchmark, which contains 40,320 videos for training,
and 16,560 for evaluation. In this setting, the training set comes
from one subset of 20 subjects, and a model is validated on
sequences from the remaining 19 subjects; 2) Cross‐View (CV)
benchmark, which includes 37,920 videos for training and
18,960 videos for evaluation. The training samples in this set
come from the camera views 2 and 3, and the evaluation
samples are all from the camera view 1. We follow the con-
ventional settings and report the top‐1 accuracy on both
benchmarks.

5.1.2 | Kinetics‐skeleton

Kinetics [38] consists of 300,000 videos clips in 400 action
classes. The video clips of Kinetics are sourced from YouTube
and have a great variety, but it only provides raw video clips
without skeleton information. Yan et al. [14] estimate the lo-
cations of 18 joints on every frame of the clips by using the
publicly available OpenPose [39] toolbox and release the Ki-
netics‐Skeleton datasets. In Kinetics‐Skeleton, all videos are
resized to a resolution of 340� 256 and are converted to a
frame rate of 30 fps. The toolbox generates 2D coordinate and
confidence score for totally 18 joints from the resized videos.
For the multi‐person clips, two people are selected based on
the average joint confidence. Each joint is represented as a
three‐element feature vector that contains the 2D coordinate
and confidence score. Following the evaluation method of Yan
et al. [14], we train the models on the training set and report
the top‐1 and top‐5 accuracies on the validation set. Because
the videos in the Kinetics dataset are captured from the real‐

F I GURE 3 The architecture of the spatial attention pooling module
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world, this experiment can better reflect the performance of
the model in real‐world situations.

5.2 | Implementation details

Our SATD‐GCN model has a total of 12 blocks. In each
block, we add a residual connection [40], which enables the
model to learn features more effectively and prevents over‐
fitting. The output channels for each block are 64, 64, 64, 128,
128, 128, 256, 256, 256, 256, and 256. We set the down‐sam-
pling rate α¼ 2 and the temporal kernel size Kt ¼ 9. A data
BN layer is added at the beginning to normalize the input data.
The final output is sent to a softmax classifier to obtain the
action prediction.

We implement our SATD‐GCN model based on the
PyTorch deep learning framework [41]. We apply the stochastic
gradient descent (SGD) algorithm with Nesterov momentum
(0.9) as the optimizer. The weight decay is set to 0.0001. We
use a Titan XP GPU for the model training and the batch size
is set to 16.

For the NTU‐RGB + D dataset, the max number of
frames in each sample is 300. We repeat the samples until it
reaches to 300 frames if the samples have frames less than 300.
There are at most two human bodies in each sample. If the
number of bodies in the sample is less than 2, we pad the
second body with 0. The number of training epoch is set as 55
and the learning rate is set as 0.1. The learning rate decay is set
as 0.1 at the 30th epoch, 40th epoch, and 50th epoch.

For the Kinetics‐Skeleton dataset, there are 150 frames in
each sample and two bodies in each frame. We randomly

choose 150 frames from the input skeleton sequence, and
slightly disturb the joint coordinates with randomly chosen
rotations and translations for data‐augmentation. The number
of training epoch is set as 70 and the learning rate is set as 0.1.
The learning rate decay is set as 0.1 at the 45th epoch, 55th
epoch, and 65th epoch.

5.3 | Ablation study

We test the effectiveness of the components of our SATD‐
GCN with the Cross‐View benchmark on the NTU‐RGB + D
dataset. We only test one stream (joint stream) in our model as
the Bone Stream can be conducted in the same way. From
Table 1, we can see that the original performance of one
stream ST‐GCN [14] on the NTU‐RGB + D Cross‐View
benchmark is 88.3%. By applying the adaptive adjacency matrix
and the specially designed data pre‐processing methods, Shi
et al. designed an AGCN [17], its performance is improved to
93.4%. We use AGCN as the baseline in this work.

To further boost the performance of ST‐GCN, we propose
two novel modules to effectively learn the temporal and spatial
features in the skeleton data, that is, the TDGC module and
the SAP module. The results in the third row and the fourth
row of Table 1 show that either the TDGC module or the SAP
module is beneficial for action recognition. Specifically,
compared to the baseline AGCN, the TDGC module boosts
the performance by 0.6% (94.0% vs. 93.4%) and the SAP
module enhances the performance by 0.5% (93.9% vs. 93.4%),
respectively. When integrating these two modules together, the
joint stream SATD‐GCN obtains the best performance, which
improves the accuracy by 1.0% (94.4% vs. 93.4%). Experi-
ments demonstrate that both the TDGC module and the SAP
module are effective. They can help the network to learn multi‐
scale and discriminative spatial‐temporal features, so as to
improve the accuracy of action classification. Besides,
compared to AGCN, the increasement of the parameters and
training/inference time of our model can be ignored (less than
10%).

Figure 4 visualizes the attention map in the SAP module.
The skeleton graph is plotted based on the physical connection
of the human body. Each circle represents one joint, and the
radius size represents the weight of the joint. It can be seen
that for the action ‘throw’, the model pays more attention to

TABLE 1 Comparison of the validation accuracy of the joint stream
SATD‐GCN with or without TDGC module and SAP module on NTU‐
RGB + D Cross‐View benchmark. (w/o means without)

Methods Accuracy (%)

ST‐GCN [14] 88.3

AGCN [17] 93.4

SATD‐GCN (JS) w/o TDGC 93.9

SATD‐GCN (JS) w/o SAP 94.0

SATD‐GCN (JS) 94.4

F I GURE 4 Visualization of the attention map in the SAP module. The radius size of the circle represents the weight of the joint

ZHANG ET AL. - 7



the movement of human hands, while for ‘kicking something’,
the joints of feet are given the higher weight. For the actions
‘pick up’ and ‘stand up’, the joints of the upper body contain
more information and are selected in the SAP module.

Table 2 shows the effect of different dilation rate in the
TDGC module and different down‐sampling rate in the SAP
module. For the dilation rate, increasing the dilation rate
gradually enables the model extracts temporal features from
subtle motion to large‐scale motion hierarchically and effec-
tively. The joint stream SATD‐GCN model, which has two ST‐
GCN blocks followed by two S‐TD‐GCN blocks with dilation
rates one and two, respectively, obtains the best performance.
For the down‐sampling rate α, the SAP module with α¼two is
the best configuration in our experiment. It should be noted
that if the dilation rate and the down‐sampling rate are too

large, the performance of the model will be damaged. Because
the process of padding in the TDGC module and the con-
duction of deleting vertexes in the SAP module will lead the
model to lose some useful information. When the dilation rates
of the two S‐TD‐GCN blocks are set to two and three,
respectively, the accuracy is even lower than the baseline
(92.8% vs. 93.4%). Because the dependence between two
frames with too large time span is very weak, and the TDGC
module will destroy the fine‐grained temporal feature instead.

5.4 | Comparisons to the state‐of‐the‐art

We compare the proposed SATD‐GCN model (two‐stream)
with the state‐of‐the‐art skeleton‐based action recognition
methods on both the NTU‐RGB + D dataset and the
Kinetics‐Skeleton dataset. The methods which we selected for
comparison include the handcraft‐feature‐based methods
[18,42], the RNN‐based methods [10,19–22,43,44], the CNN‐
based methods [8,9,23–26], and the GCN‐based methods
[14,17,29,31,44]. Results on the NTU‐RGB + D dataset are
shown in Table 3. Our SATD‐GCN outperforms the hand-
craft‐feature‐based methods, RNN‐based methods, and CNN‐
based methods for more than >4% on both the Cross‐Subject
and the Cross‐View benchmarks, which proved that GCN has
great advantages in dealing with skeleton data. Among the
GCN‐based methods, our SATD‐GCN also achieves the state‐
of‐the‐art performance. Compared to ST‐GCN [14], the im-
provements of our method reach to 7.8% (89.3% vs. 81.5%)
and 7.2% (95.5% vs. 88.3%) on the Cross‐Subject benchmark
and the Cross‐View benchmark, respectively. For the most
related work 2s‐AGCN [17], our results outperform it by 1.1%

TABLE 2 Comparison of the validation
accuracy of the joint stream SATD‐GCN with
different configuration on the NTU‐RGB + D
Cross‐View benchmark

Model Configuration Accuracy (%)

(S‐TD‐GCN � 4, dilation rate = 1) 94.1

(S‐TD‐GCN � 2, dilation rate = 1)+(S‐TD‐GCN � 2, dilation rate = 2) 94.4

(S‐TD‐GCN � 2, dilation rate = 2)+(S‐TD‐GCN � 2, dilation rate = 3) 92.8

(SAP � 1, down‐sampling rate = 2) 94.4

(SAP � 1, down‐sampling rate = 3) 93.7

TABLE 3 Comparison of the validation accuracy with state‐of‐the‐art
methods on the NTU‐RGB + D dataset

Methods Cross‐Subject (%) Cross‐View (%)

Lie Group [18] 50.1 82.8

HBRNN [20] 59.1 64.0

Deep LSTM [19] 60.7 67.3

ST‐LSTM [21] 67.2 77.7

STA‐LSTM [10] 73.4 81.2

VA‐LSTM [22] 79.2 87.7

ARRN‐LSTM [43] 80.7 88.8

Ind‐RNN [44] 81.8 88.0

Two‐stream 3DCNN [23] 66.8 72.6

TCN [8] 74.3 83.1

Clips + CNN + MTLN [9] 79.6 84.8

Synthesized CNN [24] 80.0 87.2

CNN + Motion + Trans [25] 83.2 89.3

3 scale ResNet152 [26] 85.0 92.3

ST‐GCN [14] 81.5 88.3

DPRL + GCNN [45] 83.5 89.8

Motif‐GCNs + VTDB [31] 84.2 90.2

AS‐GCN [29] 86.8 94.2

2s‐AGCN [17] 88.2 94.9

SATD‐GCN (ours) 89.3 95.5

TA B LE 4 Comparison of the validation accuracy with state‐of‐the‐art
methods on the Kinetics‐Skeleton dataset

Methods Top‐1 (%) Top‐5 (%)

Feature Enc. [42] 14.9 25.8

Deep LSTM [19] 16.4 35.3

TCN [8] 20.3 40.0

ST‐GCN [14] 30.7 52.8

AS‐GCN [29] 34.8 56.5

2s‐AGCN [17] 35.9 58.6

SATD‐GCN (ours) 36.6 59.8
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(89.3% vs. 88.2%) on the Cross‐Subject benchmark and 0.6%
(95.5% vs. 94.9%) on the Cross‐View benchmark. The results
reveal that our SATD‐GCN can better classify a variety of
human actions by combining the TDGC module and the SAP
module.

Table 4 shows the results of the Kinetics‐Skeleton dataset,
where we compared the proposed SATD‐GCN with six state‐
of‐the‐art approaches. We can see that our SATD‐GCN out-
performs the other competitive methods in both Top‐1 and
Top‐5 accuracies. In contrast to ST‐GCN [14], the improve-
ments of our method reach to 5.9% (36.6% vs. 30.7%) and
7.0% (59.8% vs. 52.8%) on Top‐1 accuracy and Top‐5 accu-
racy, respectively. For the most related work 2s‐AGCN [17],
our results outperform it by 0.7% (36.6% vs. 35.9%) on Top‐1
accuracy and 1.2% (59.8% vs. 58.6%) on Top‐5 accuracy.

6 | CONCLUSIONS

In this article, we propose a novel SATD‐GCN, which con-
tains a TDGC module and an SAP module, for skeleton‐based
action recognition. The TDGC module can effectively extract
the temporal features in different time scales, improve the
perception field in the temporal domain, and maintain the
robustness to different motion speed and sequence length. The
SAP module can select human body joints which are beneficial
for action recognition by self‐attention mechanism and alle-
viate the influence of data redundancy and noise. In addition,
both the TDGC module and the SAP module can be easily
incorporated into the ST‐GCN, and significantly improve the
performance of ST‐GCN. Owing to the contribution of these
two modules, our SATD‐GCN obtains the state‐of‐the‐art
performance on two large‐scale action recognition benchmark
datasets.
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