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Abstract— Despite outstanding performance in image
recognition, convolutional neural networks (CNNs) do not
yet achieve the same impressive results on action recognition
in videos. This is partially due to the inability of CNN for
modeling long-range temporal structures especially those
involving individual action stages that are critical to human
action recognition. In this paper, we propose a novel action-stage
(ActionS) emphasized spatiotemporal vector of locally aggregated
descriptors (ActionS-ST-VLAD) method to aggregate informative
deep features across the entire video according to adaptive video
feature segmentation and adaptive segment feature sampling
(AVFS-ASFS). In our ActionS-ST-VLAD encoding approach,
by using AVFS-ASFS, the keyframe features are chosen and the
corresponding deep features are automatically split into segments
with the features in each segment belonging to a temporally
coherent ActionS. Then, based on the extracted keyframe feature
in each segment, a flow-guided warping technique is introduced to
detect and discard redundant feature maps, while the informative
ones are aggregated by using our exploited similarity weight.
Furthermore, we exploit an RGBF modality to capture motion
salient regions in the RGB images corresponding to action
activity. Extensive experiments are conducted on four public
benchmarks—HMDB51, UCF101, Kinetics, and ActivityNet for
evaluation. Results show that our method is able to effectively
pool useful deep features spatiotemporally, leading to the
state-of-the-art performance for video-based action recognition.
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I. INTRODUCTION

RECOGNIZING human actions in videos is one of the
fundamental problems in computer vision [1]–[3], and

has received much attention in both the research community
and industry owing to its wide range of applications, e.g.,
video surveillance [10], robot navigation, and human behavior
analysis [7], [9]. While a wide range of learning architectures
are available, the paradigm which splits the action recognition
problem into three main steps [11] – feature extraction, feature
encoding, and classification – currently gives more favorable
results than other designs. Each step has a significant influence
on the accuracy, and thus many studies have been carried out
to address these problems [2], [12], [22]. In this paper, we
focus on deep feature encoding for videos to model long-range
spatio-temporal structure for action prediction.

Traditionally, hand-crated features [23], [25]–[27] are
exploited for action recognition. However, such features can
be easily affected by illumination, weather condition, view-
ing angle, and other imaging conditions. Recent years, deep
learning features obtained via convolutional neural networks
(CNNs) demonstrated better robustness and discriminative
power, and accordingly have become the new trend for video-
based action recognition [2], [4]–[6], [18], [19].

Interestingly, although CNN approaches have achieved great
success in recognizing objects in still images [17], [31]–[33],
they have not yet gained significantly better performance over
the hand-crated methods when dealing with video analytics
tasks [7]. One major drawback is that CNNs are not directly
suitable for videos since they lack the ability to capture long-
range spatio-temporal information in the features [29].

Since videos include two types of complementary cues:
appearance and motion, to extract spatio-temporal information
for action recognition in videos, Simonyan and Zisserman [2]
presented a two-stream network (TS-Net). A TS-Net consists
of two deep convolutional networks (ConvNets) to individually
operate on RGB images to extract spatial features, and on
optical flow images [35] to learn motion features. The TS-Nets
are extensively studied and obtained competitive results
compared to other deep architectures due to the following main
characteristics [7], [12], [20]: 1) Employing new ultra-deep
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Fig. 1. The ActionS-ST-VLAD strategy for deep features encoding. Compared to ActionVLAD [12] which concerns only the sub-actions, our ActionS-ST-
VLAD regards both different sub-actions spatially and different action-stages temporally. The local features are pooled in each ActionS first, and then encoded
across the whole video over all the ActionS-based video-segments to form a video representation.

architectures, e.g., BN-Inception [36], Res-Nets [37], etc.;
2) Pre-training on large-scale image datasets; 3) Exploiting
new complementary modalities to combine with the RGB
appearance and optical flow [3], [21], [28]. Inspired by these
effective good practices, we propose a three-stream network
(3S-Net) that consists of three streams coming from three
modalities (Figure 3), RGB appearance, optical flow and
RGBF, where the third modality dubbed RGBF is formulated
by fusing the RGB image and the optical flow image to
form a third stream that attempts to capture motion salient
regions [39].

More importantly, to address the video-level long-range
feature encoding issue, we exploit an effective video represen-
tation by integrating the 3S-Net with trainable spatio-temporal
deep feature aggregation through the following strategies:

A. Building Video-Level Representation via ActionS-ST-VLAD

Due to the limitations on GPU memory, for long videos,
we are unable to load the entire video for training a CNN.
Usually, one may process individual RGB frames and short
snippet of motions (e.g., 10-staked optical flow [2], [4]).
However, this method mostly ignores the long-term temporal
structure of the video, which may be critical to recognizing
realistic human actions. Our basic motivation, similar to [6],
[12], and [13], is to design a pooling strategy to learn a global
video representation for modeling long-term video structure
and for predicting complex human actions.

According to some recent research [11]–[14], the super-
vector-based encoding method – Vector of Locally Aggregated
Descriptors (VLAD), which was initially presented in [7]
– has demonstrated its superiority over other encoding

approaches in many tasks involving aggregation of deep
features. In this work, we present an action-stage (ActionS)
emphasized spatio-temporal VLAD (ActionS-ST-VLAD)
method, which is derived from the effective video encoding
technique ActionVLAD [12], by incorporating adaptively
captured action-stages (see Figure 1). One limitation of
ActionVLAD is that it disregards the fact that each action
is composed of multiple temporal coherent action-stages and
every ActionS may have its own effect on action recognition.
To this end, we adaptively split the video into segments based
on ActionS, dubbed adaptive video feature segmentation
(AVFS; Figure 2). A spatial-temporal VLAD (ST-VLAD) is
used to encode the segment-level deep feature maps { f VSk }
into a video representation. In this way, not only convolutional
descriptors over the whole spatio-temporal extent of the video
are aggregated, but also the specific cluster of features
regarding their temporal location, i.e., ActionS, is considered.

B. Selecting Informative Deep Features

Since the image content varies slowly across video frames,
successive frames are highly redundant. To reduce the redun-
dancy, current CNNs usually utilize sampled video frames,
by uniform or random sampling [6], [7], [12]. For example,
ActionVLAD used just 25 sparse sampled frames per video for
processing. However, human action recognition is inherently
different from a problem like object verification in video [24],
in that different frames may correspond to different states
of an action. Therefore, uniform or random sampling may
miss some important frames while keeping some frames that
are not informative (redundant/insignificant) or even harmful
(e.g., noisy frames) for recognition. To handle this problem,
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Fig. 2. The proposed AVFS method enables to temporally split the video deep features into ActionS-based video-segments. For instance, a “BalanceBeam”
action usually consists of multiple action-stages: (i) initial preparation, (ii) run-up, (iii) tumbling, (iv) somersault, and (v) landing.

Fig. 3. The network architecture of our method, which consists of four main components: 1) Deep feature extraction. Three stream ConvNets, i.e., SCN, TCN,
and STACN, are constructed to extract three types of deep features. 2) Deep feature clustering and sampling. An AVFS-ASFS is proposed to adaptively divide
the extracted deep features into ActionS-based video-segments and sample informative feature maps in each segment. 3) Deep feature encoding. A ST-VLAD
method is used to learn a whole video-representation to model long-range spatio-temporal structure of video actions in each stream. 4) Video representations
are fused for final action prediction.

in each ActionS derived video-segment, we propose a novel
sampling method, called adaptive segment feature sampling
(ASFS), which uses the deep feature flow warping method [38]
to select valid feature maps. The preserved feature maps after
ASFS in each segment are aggregated to form a video-segment
feature map f VSk .

By integrating the AVFS-ASFS with ST-VLAD, the overall
performance of our ActionS-ST-VLAD on recognizing human
actions is significantly enhanced compared to ActionVLAD.

In summary, our approach has the following
contributions:

• A novel feature encoding technique, ActionS-ST-VLAD,
which considers different action-stages, is designed to
capture the long-term temporal structure by pooling deep
features over the entire video to obtain a video represen-
tation for action classification.

• Taking into account action-stages, an AVFS approach is
proposed to group deep features in temporal coherent
clusters adaptively based on the special action stages of
individual videos.

• An ASFS method is presented to sample every ActionS
based video-segment to select discriminative feature
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maps and discard redundant/insignificant/noisy ones. The
AVFS-ASFS method can be extended to other video tasks
which require segmentation and sampling.

• A new RGBF modality, which takes into account
motion distinctive regions associated with human actions,
is designed to formulate a third stream to learn com-
plementary features for other two streams to boost the
performance of action recognition.

II. RELATED WORK

Recent years have seen significant efforts devoted to action
recognition in videos, especially those employing CNNs. It is
beyond the scope of this work to discuss all the related works.
Instead, we focus on deep CNN methods in three aspects:
1) flow-guided feature warping; 2) exploiting effective stream
networks; 3) learning a video-level representation to model
long-term temporal structure for action prediction.

A. Flow-Guided Feature Warping

Zhu et al. [38] proposed a deep feature flow method for
video recognition. By selecting sparse key frames, the deep
features of other frames can be obtained by propagating the
features from them via flow-guided warping. This achieves
better computational tractability as the flow estimation and
feature propagation are much faster than the computation of
deep features. To solve the difficulties of object detection in
videos due to motion blur, video defocus, etc., Zhu et al. [45]
modified the per-frame features by aggregating nearby features
along the motion paths through flow-guided feature warping.

B. Stream Networks for Action Recognition

To model spatial and temporal information jointly,
Simonyan and Zisserman [2] introduced the TS-Net to process
an optical flow stream and an appearance stream. To improve
the performance of [2], some semantic cues have been
exploited. For example, Cheron et al. [40] utilized human
pose positions to detect informative regions and extract deep
features from these body joints. Wang et al. [7] exploited two
visual cues – RGB difference and warped optical flow fields,
to produce two additional modalities for the TS-Net. In some
other work, the semantic cues were used to construct new
streams of features. Singh et al. [42] employed a state-based
tracker to detect the bounding box of the person, and two
person-centric appearance and motion streams are constructed.
Tu et al. [3] applied the IB-RPCA [3] to obtain two human-
related regions. Based on the detected regions, two other
TS-Nets are formed. We propose an RGBF modality to con-
struct a third stream to pay attention to the motion salient part
of the RGB image.

Different ways were studied in [4] to combine the
appearance and motion features to take advantage of the
spatio-temporal information in a best way. Wang et al. [5]
exploited a multi-layer pyramid fusion strategy to replace the
fusion method of Feichtenhofer et al. [4], which is able to
integrate the spatial and temporal features at multiple levels.
Following [12], we fused the video representations of the three
streams at the last convolutional layer through weighted sum.

C. Learning a Video-Level Deep Representation

To capture the long-range temporal structure for video-
based action recognition, many schemes have been proposed
[5]–[7], [11], [12]. Duta et al. [11] exploited Spatio-Temporal
Vector of Locally Max Pooled Features (ST-VLMPF) to learn
a general video representation that combines the deep features
over the whole video with two different assignments, and they
performed two max-poolings and one sum-pooling for each
assignment. Kar et al. [6] presented an AdaScan approach,
which pools the sampled video frames across the video based
on the predicted discriminative importance of each frame.
To learn a more global video representation, Wang et al. [5]
sampled optical flow frames by multi-path temporal subnet-
works that shared network parameters in a longer sequence.
An STCB operator is designed to integrate the spatial and
temporal features effectively.

The works most related to ours are [7] and [12].
Wang et al. [7] designed a temporal segment network (TSN),
which uses a sparse sampling scheme to extract short snippets
in manually obtained video segments over the video. A con-
sensus function is utilized to aggregate the preliminary predic-
tion of each snippet. However, the artificial equal segmentation
method is unable to capture the video segments with the
concern of ActionS flexibly. In addition, the sparse sampling
strategy is unable to remove insignificant frames while pre-
serving useful ones automatically. Girdhar et al. [12] modified
the NetVLAD [43] with a trainable spatio-temporal extension
to aggregate the deep features both spatially and temporally.
A vocabulary of “action words” is used to aggregate descrip-
tors into a video-level fixed-length vector. However, since they
group the features into clusters only based on the position
of the anchor points spatially without regard for the temporal
coherence, one cluster descriptors usually spans several action-
stages temporally. We address this issue by dividing the video
into action-stages and encoding the frame features in each
ActionS separately (see Figure 2).

III. THE PROPOSED METHOD

In this section, we give a detailed description of our encod-
ing method – ActionS-ST-VLAD, which can be decomposed
into two main steps: 1) Adaptive video-level ActionS empha-
sized deep features segmentation and segment-level features
sampling, and 2) Learning an entire video representation via
ST-VLAD in each stream, and fusing the representations of
all steams for final prediction. To the best of our knowledge,
selecting informative deep features has not be done before
in video-based action recognition. Additionally, our approach
employs a third stream RGBF (Figure 5), which attempts to
capture motion-salient regions.

A. Deep Features Segmentation and Sampling

Since most of the ConvNet frameworks [2]–[4] are operated
on single RGB frame or stacked flow frames in a short snippet,
they are unable to model the long-range temporal struc-
ture of the video actions. However, realistic human actions
usually span a long time. It is difficult to distinguish two
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actions that have similar appearance over short horizons [5].
Moreover, complex actions usually consist of multiple action-
stages where each ActionS has coherent motion pattern with a
specific intention [30]. As shown in Figure 2, “BalanceBeam”
normally includes the action-stages of (1) initial preparation,
(2) run-up, (3) tumbling, (4) somersault, and (5) landing.
For action prediction, the features should be pooled in each
ActionS and then further aggregated across all the action-
stages temporally. Consequently, we need to improve the
ConvNet to enable it not only to learn the visual representation
over the whole video, but also to analyze the spatio-temporal
characteristic of the video with regard to (1) action-stages and
(2) the discriminative importance of each video frame.

Drawbacks of General Action Recognition Methods:
1) Almost all the previous action recognition methods ignore
the important segmental coherent characteristic. Recently, to
handle this problem, the recent TSN [7] divides a video into
3 segments with equal duration V = {S1, S2, S3} to address
the temporal segmentation issue. This scheme is useful to
improve the recognition performance. However, it disregards
the facts that different ActionS lasts different time duration,
and different actions contain different numbers of action-
stages. Thus equal segmentation (ES) is not an optimal choice.

2) Consecutive video frames are highly redundant and the
redundancy is more severe for deep features [38], and thus
most of them do not contribute much to video-based action
recognition. An even greater concern is that some noisy frames
would degrade the accuracy of action recognition.

To reduce the redundancy, the popular way is to use a
uniform or random sampling strategy [2], [4], [6], [12] to
down-sample the videos. In ActionVLAD [12], they select
T = 25 frames per video randomly to learn and evaluate the
video representation. In TSN [7], they utilize a sparse temporal
sampling method to down-sample each video segment Sk into
a short snippet Tk where the samples are uniformly distributed
along the timeline. However, such a uniform or random
down-sampling strategy does not consider the discriminative
importance of each frame, e.g., some informative frames
would be removed while some redundant/insignificant/noisy
frames would still be preserved. To handle the noisy frames,
AdaScan [6] proposed an ‘Adaptive Scan Pooling (AdaScan)’
method to weighted mean pooling feature maps with the
weights represented by the predicted discriminative impor-
tance scores. Since the ‘Adaptive Pooling’ is conducted by
recursively predicting a score that measures the distinctiveness
of the current frame across the video, it is computational
expensive. To decrease the cost time, Kar et al. [6] sam-
ple 25 frames from each video uniformly and conduct the
‘Adaptive Pooling’ on these sampled 25 frames. In this case,
compared to [7] and [12], the redundant/insignificant/noisy
frames can all be tackled. However, some informative frames
may be discarded. Consequently, exploiting a method that
(1) is able to quantify the importance of each frame and (2) has
a proper running speed is a desirable task.

We propose a novel AVFS-ASFS method to address these
two issues as follows:

1) Adaptive Video Feature Segmentation (AVFS): For a
input video V, we first extract the deep feature of each

frame fn :

F = { f1, . . . , fn, . . . , fN } (1)

where N is the frame number of the video V.
According to the extracted deep features, we apply k-

means to learn a Codebook C [44] with a vocabulary of K �
“visual words” C = {c1, c2, . . . , cK � } based on the feature
similarity, and each frame feature will be assigned a label
without the temporal consistency constraint (see Figure 4).
Generally, for the first ActionS segment S1, the first frame
f1 will be selected as the key frame fS K1, and so on for
other ActionS segment Sk . There is an elemental principle
for two local features fi and f j : if they are located in two
different action-stages, their difference is large; conversely, if
they are distributed in a same ActionS, their difference is small.
To determine whether the feature maps from f2 to fi belong to
a same ActionS as fS K1 , we utilize the cosine similarity (CS)
for evaluation (taking the first ActionS segment S1 as the
example):

SF(SK1, i) = | fS K1 · fi |
� fS K1�� fi � (2)

If the deep feature similarity SF(SK1, i) is smaller than τ1,
the frames from f1 to fi−1 will be grouped as the first segment
S1 = { f1, . . . , fi−1}, and fi is classified to the next ActionS
segment S2 and considered as the second key frame fS K2 .

Segmentation Updating: As shown in Figure 4, for k-means
operator, if fi−1 and fi have the same label, we will update fi

and re-classify it to S1. Besides, the neighbors of fi , like fi+1,
will also be grouped into S1 if they have the same labels
as fi . By following this pattern, all the key frame features,
their corresponding ActionS segments, and the selective feature
maps in each segment will be automatically determined:

fS K = { fS K1, . . . , fS Kk , . . . , fS KK }
V = {S1, . . . , Sk . . . , SK }
Sk = { fS1, . . . , fSm , . . . , fSM } (3)

2) Adaptive Segment Feature Sampling (ASFS): It is nec-
essary to sample the video to compress redundant frames
which have no contribution to improved action recognition.
In each ActionS segment, after locating the key frame feature
map fS Kk , we apply the flow-guided warping strategy of [45]
to select the discriminative local features by comparing the
similarity between fS Kk and the warped feature maps of other
frames.

For two consecutive video frames Ii and Ii+1, we compute
their optical flow F(i, i + 1), which describes the pixel cor-
respondence between Ii and Ii+1 [46], according to the deep
CNN-based method FlowNet2 [47]. For the non-consecutive
frames Ii and I j , their optical flow F(i, j) is calculated by
compositing the intermediate flow fields F(i, i + 1).

To execute propagation, we first bilinearly resize the flow
field F(i, j) to the same resolution of the feature maps. Then,
in one segment Sk , each feature map fSi is warped to the key
frame fS K j with the resized F(i, j):

fSi→ j = W ( fSi , F(i, j)) (4)



2804 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 6, JUNE 2019

Fig. 4. The working scheme of our deep feature segmentation – AVFS (Using the action video “Lunges” in UCF101 [48] for explain). At the bottom,
a segmentation updating strategy is designed by us: fi will be updated and re-classified to the segment of fi−1 if fi−1 and fi have the same label; the
neighbors of fi will also be classified to the segment of fi if they have the same labels.

where W(·) is the spatial warping function that works on all
the positions for every channel in the feature maps by bilinear
interpolation [38]. j and i respectively denote the indices of
the key frame and the other frames in Sk .

To sample Sk , a similarity measure (SM), which evaluates
the importance of the non-key frames to the key frame,
is proposed by computing the comparability between fSi→ j

and fS K j :

SM(i, j) = ex p(−� fSi→ j − fS K j �2)
∑

i � ex p(−� fSi�→ j
− fS K j �2)

(5)

where i � denotes the index of any frame in Sk . If i � = j ,
fSi�→ j

= fS K j , and SM( j, j) is also computed according to
Eq. (5). SM(i �, j) ∈ (0, 1).

The sampling is operated in terms of two conditions based
on SM(i, j). Cond 1: If the warped feature fSi→ j is closely
similar to the key frame feature fS K j , i.e., SM(i, j) > τ2,
we should remove its corresponding local feature fSi in the
subsequent procedure. Cond 2: If the warped feature fSi→ j

is largely different to fS K j , i.e., SM(i, j) < τ3, we treat its

corresponding frame as noise and discard its deep features.
(We set τ2 >= 0.5 and τ3 ∈ (0, 0.05] experimentally)

The obtained informative local deep features in each video
ActionS segment Sk are pooled via weighted average, using
the similarity weight to form a segment-level deep feature
map f VSk :

f VSk = 1
∑

i � SM(i �, j)
(
∑

i �
SM(i �, j) fSi� ) (6)

The f VSk is then L2-normalized [6] to obtain the final
segment-level feature map. The deep features for the entire
video can be expressed as:

f V = { f VS1, . . . , f VSk . . . , f VSK } (7)

Since we select the deep features of the last convolutional
layer for processing, the proposed method can be applied to
nearly all CNN architectures, such as VGG-Net [32], BN-
Inception [36], and Res-Nets [37].
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B. ActionS-ST-VLAD for Video Representation Aggregation

In each stream, how to combine multiple ActionS-based
segment-level deep features f VSk ( f VSk ∈ f V ) to construct a
single video-level representation for the entire video is crucial
for final action recognition. ActionVLAD [12], which is end-
to-end trainable, is able to aggregate deep features frame by
frame over space and time to form a video representation.
However, ActionVLAD only concerns sub-actions: dividing
the descriptor space into cells according to a vocabulary
of “action words” spatially, and then applying the Sum to
aggregate the residual vectors inside each of the clusters over
the whole video. It ignores that one cluster usually crosses
multiple action-stages temporally. As shown in Figure 1,
at a position Pi in cluster Ck , if the feature of frame fni

and frame fmi are located in different action-stages, their
difference is large and their action intentions are different.
Therefore, directly aggregating them only based on position
over time is not good for formulating a feature representation
to model the long-term temporal structure of a video action.
With the consideration of ActionS, the encoded segment-level
feature map f VSk avoids this drawback of ActionVLAD,
as the pooled features in f VSk follow one action intention.
Significantly, we exploit an ActionS-ST-VLAD which applies
the spatio-temporal VLAD (ST-VLAD) of [12] to aggregate
the calculated f VSk to obtain a final video representation FV :

FV ( j, l) =
SK∑

S1

N∑

i=1

e
(−α�xiSk

−cl�2)

∑
l� e

(−α�xiSk
−c�

l�2)
(xiSk

( j) − cl( j)) (8)

where xiSk
( j) and cl( j) are respectively the j-th components of

the local deep feature xiSk
and the anchor point cl . xiSk

∈ �D ,
is a D-dimensional local descriptor extracted from spatial
location i ∈ {1, . . . , N} and temporal Sk -th segment-level deep
feature map of a video (Sk ∈ {S1, . . . , SK }, see Eq. (7)). The
descriptor space �D is divided into L clusters using a vocab-
ulary of L “action words” represented by anchor points {cl}.
α is a tunable hyper-parameter. The second term xiSk

( j)−cl( j)
is the residual between the descriptor and the anchor point of
cell l in the video segment Sk . The aggregated descriptor are
L2-normalized as [12] to form a single descriptor with the
vector size of L × D. In our framework, the size of the final
video representation is FV = 64×1024, where we set L = 64
following [12], and 1024 is the dimension of the learned local
deep feature. The parameters, e.g., the deep feature extractor,
anchor points {cl}, and classifier, can be learnt end-to-end
jointly.

In general, our aggregation strategy is an extension of
ST-VLAD [12] with the improvements of ActionS-based
segmentation, sampling, and pooling. Since our ActionS-ST-
VLAD considers not only the spatial coherence of sub-actions
but also their temporal consistency, it is able to select the
distinctive deep features, leading to a performance much better
than ActionVLAD.

C. Spatio-Temporal Attention Modality – RGBF

To model the dynamic motion of human actions effectively,
we design an RGBF modality (see Figure 5), which can

Fig. 5. The comparison of the RGB, Flow, MCM, and RGBF on the
UCF101 and HMDB51 datasets.

localize the motion salient regions that correspond to human
activities, by combing the RGB image and a movement
confidence map (MCM) derived from the optical flow:

RG B F(x, y) = Im(x, y) × MF(x, y) − M Fmin

M Fmax − M Fmin
(9)

where (x, y) represents a pixel location. Im denotes one
RGB frame of a video, and MF is the magnitude of its
corresponding flow field F. MFmax and MFmin represent
the maximum and minimum flow magnitude of F. Before
combination, we linearly transfer MF to a MCM (the second
term of Eq. (9)), which indicates the probability of where
and how strong the motion occurs, by re-scaling each of
the flow magnitude value to a range of [0, 1]. Figure 5
shows that RGBF highlights the motion discriminative part
of the human body related to action, and hence potentially
supplies complementary information to the appearance and
motion modalities. For example, in contrast to RGB image,
insignificant features, e.g., the static background information
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that is irrelevant the action, is greatly compressed. In contrast
to optical flow, valid appearance information is added.

IV. EXPERIMENTS

In this section, to evaluate the proposed AVFS-ASFS based
ActionS-ST-VLAD method, four challenging publicly avail-
able human action recognition benchmarks are selected for
experimenting: UCF101 [48], HMDB51 [49], Kinetics [50]
and ActivityNet [51]. Extensive experiments are conducted to
test the effect of various parts of our approach, e.g., (1) the
respectively influence of AVFS, ASFS and AVFS-ASFS;
(2) the performance of the ActionS-ST-VLAD pooling; (3) the
effect of the RGBF modality. Finally, we compare our method
with the state-of-the-arts on both trimmed and untrimmed
videos to verify whether our proposed method is effective to
recognize human actions.

A. Datasets and Implementations

UCF101 contains 13320 videos belong to 101 action cat-
egories. For one class, it includes more than 100 video
clips, and for one video clip, it contains an average length
of 180 frames. They span a large range of activities such as
sports and human-object interaction. It is a complex dataset
as the captured videos varies significantly in scale, viewpoint,
illumination, and camera motion.

HMDB51 consists of 6766 action videos which have been
grouped to 51 action classes. The videos are collected from a
large number of sources, including movies and online videos.
It is challenging for action recognition due to the issues of
videos: 1) the quality is poor; 2) a wide range of variations in
which actions occur [56]; 3) contain strong camera motions.

Kinetics is a large-scale well-labeled video dataset used
for action recognition. It includes more than 300000 trimmed
videos covering 400 human action classes, and for each
action, there are more than 400 video clips. The videos are
collected from realistic, challenging YouTube, and each video
is temporally trimmed last around 10 seconds.

ActivityNet (V1.3) is an untrimmed video dataset, which
contains 849 hours of video and 28108 action instances.
200 human action categories with an average of 137 videos
per category. ActivityNet is split into three different subsets
randomly, i.e., training, validation, and testing. In particular,
50%, 25% and 25% videos are respectively utilized for train-
ing, validation and testing.

On HMDB51 and UCF101, we follow the original evalua-
tion measure using three training/testing splits, and the final
results are obtained by averaging the accuracy over the three
splits. On ActivityNet, the mean average precision (mAP) is
applied to evaluate the performance.

1) Deep Feature Extraction: We design an architecture
consists of three streams to extract three types of deep features:
a spatial convolutional network (SCN) is used to extract the
appearance information on RGB images, a temporal convo-
lutional network (TCN) is employed to capture the motion
information on flow fields, and a spatio-temporal attention
convolutional network (STACN) is utilized to learn the appear-
ance information with attention to motion salient regions. For

Fig. 6. The performance of AVFS with different τ1 on UCF101 split 1 of
the spatial-stream (Spa-Stream).

each input video, we downsample it equally with a ratio of 0.5.
Specifically, 1) the spatial-stream model of Wang et al. [7]
with fine-tuning is introduced for our SCN to extract features
of every frame. The features at the last convolutional layer
(Inception5b) are selected for processing. For each frame,
the output of Inception5b is a descriptor with a spatial size of
7 × 7 with 1024-dimensional descriptors. For a video, before
our AVFS-ASFS, we get in total #�0.5 × f rames�× 49 deep
features. 2) The temporal-stream model of Wang et al. [7]
with fine-tuning is applied to our TCN. FlowNet2 [47] is used
to compute the optical flow. For each input flow image to our
TCN, it contains 20 channels which is formulated by stacking
10 consecutive x and y direction flow components. We can
obtain #(�0.5× f rames�−9)×49 feature maps with each has
1024 dimensions. 3) We use the cross modality pre-training
technique to train a STACN model with the BN-Inception
architecture as [7]. In which we use the appearance-stream
model of Wang et al. [7] as the initialization and then
finetuned with our RGBF images. At Inception5b, we can get
#(�0.5 × f rames� − 1) × 49 features in total.

2) AVFS-ASFS for Flow and RGBF: For the other two
modalities – optical flow and RGBF, their temporal ActionS
segments {Sk}, the key frame feature maps { fS Kk }, and the
selected informative feature maps after sampling in each
segment, are directly obtained according to their corresponding
information in the RGB modality. To aggregate their feature
maps in a segment, the weight between the key frame and one
of the other frames is computed via the CS measure without
the flow guided warping (refer to Eq. (2)).

3) Fusing Video Representations of the Three Streams: The
video representations of the three streams are fused at the
last convolutional layer via weighted average as [12] followed
by L2-normalization, which enables our architecture to be
optimized by a unified spatio-temporal loss function ene-to-
end learnable.

For fair comparison and analysis, from sub-section B to C,
we select the two-stream architecture with the pre-trained SCN
and TCN models of Wang et al. [7] as the baseline.

B. Effect of AVFS-ASFS

1) Evaluation of AVFS: For this testing, in each segment,
the deep features are encoded by mean pooling. Figure 6
shows the performance of AVFS with the setting of different
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Fig. 7. The selected key frame of each segment of our AVFS method
(τ1 = 0.85) compare to the equal segmentation (ES) approach of TSN
on HMDB51 (“DrawSword” and “Smile”) and UCF101 (“Lunges” and
“LongJump”).

TABLE I

EVALUATION (ACC.(%)) OF AVFS ON UCF101 SPLIT 1
OF THE SPATIAL-STREAM (Spa-Stream)

τ1 on the appearance-stream. If τ1 is small, the number of
feature segments is small. For most of the videos in UCF101,
the number of segments reduced to 1 if τ1 < 0.5. The best
result is obtained when τ1 = 0.85, and we set τ1 = 0.85 for all
the other experiments. Figure 7 shows the obtained segments
due to our AVFS. Each segment corresponds to a different
ActionS, which is different from other segments visually
if an action contains multiple action-stages. For example,
with our AVFS, “LongJump” is divided to 6 action-stages,
e.g., Run-up, Long-jump, Landing, Clawing on the ground,
Standing, and Leaving. In contrast, with the normally used
ES method of TSN, segments S1 and S2 are confused, some
frames in S2 share the same action phase (Run-up) as S1, and
some other frames in S2 spans several other action-stages.
For “Smile”, as all frames in the video have one only action
intention, our AVFS treats the entire video as one ActionS,
while the ES separates it into three repeated segments.

Table I compares the performance of two segmentation
strategies on the spatial-stream (Spa-Stream): our AVFS and
the ES approach. Our AVFS outperforms the ES at least
by 0.5% (86.3% vs 85.8% (S = 7)). If the number of
segments is small, e.g., S = 1, the results are poor. This is
because an action is usually consist of several action-stages,
and each ActionS has its own intention and makes a different
contribution to the entire action. Thus, we should decompose
an action video into ActionS segments instead of treating the
human action as one whole phase or several equal phases that
without physical significance.

TABLE II

EVALUATION OF ASFS ON UCF101 SPLIT 1 (ACC.(%))/
ACTIVITYNET V1.2 (MAP(%)) OF THE

SPATIAL-STREAM (Spa-Stream)

Fig. 8. The influence of the thresholds τ2 and τ3 on UCF101 split 1.

TABLE III

EVALUATION OF ASFS-AVFS ON UCF101 SPLIT 1
(ACC.(%))/ACTIVITYNET V1.2 (MAP(%))

2) Evaluation of ASFS: Table II shows the results of differ-
ent sampling strategies. N is the number of sampled frames.
The accuracy of using all the frame features is not much
better than only employing uniformly sampled features while
the time cost is much higher, which demonstrated that the
succussive video frames are redundant and most of them are
not helpful for action recognition. In contrast, the proposed
ASFS is able to select the informative frames and discard
useless ones, thus its performance is boosted by 0.6% com-
pared to the widely used sparse sampling – N = 25 [6], [12],
and is enhanced by 0.3% compared to the none sampling –
No-Sampling [11]. Figure 8 shows that the influence of the
threshold parameters τ2 and τ3 are insignificant if we set
τ2 >= 0.5 and τ3 <= 0.05.

3) Evaluation of ASFS-AVFS: Table III shows the overall
performance of our ASFS-AVFS in different streams. In either
the individual stream or the combined two-stream, our
ASFS-AVFS approach obtains the best results, which reveals
that splitting actions into different ActionS segments and
adaptive sampling the segments to choose the discriminative
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Fig. 9. Visualization of the action class information by using DeepDraw [62]
on the spatial-stream. Three settings are compared: 1) Without both randomly
sampling and segmentation (second column); 2) Randomly sampling with
equal segmentation (TSN [7]) (third column); 3) Our adaptive video feature
segmentation and adaptive segment feature sampling (AVFS-ASFS) strategy
(fourth column).

deep feature maps can be widely used for different input
modality-derived streams. For example, on the trimmed video
dataset – UCF101 split 1, the performance gain between our
AVFS-ASFS and No AVFS-ASFS reaches to 1.6% on the Two-
Stream network. On the more complicated untrimmed video
dataset – ActivityNet V1.2, compared to No AVFS-ASFS,
the accuracy of our AVFS-ASFS is improved by 3.2%.

In Figure 9, we visualize and compare the learned results for
four video actions of Figure 7. From top row to bottom row are
the results of “DrawSword” (HMDB51), “Smile” (HMDB51),
“Lunges” (UCF101), and “LongJump” (UCF101), respec-
tively. Two problems are generated when without both adaptive
deep feature sampling and video segmentation: 1) Some useful
features would be eliminated while some useless features
would be preserved; 2) The role of action stages, which
contain different physical intentions and contribute much to the
recognition of the entire human action, is ignored. Specially,
for the first setting, in the action video “DrawSword”, it is
hard to discern the action as some indifferent scenery patterns
are extracted, while the significant action features that played
by the man are not learned. In contrast, with our proposed
ASFS-AVFS strategy, not only the discriminative features
are learned, but also the long-term temporal structure with
the concern of ActionS is modeled. Consequently, it is easy
to recognize the DrawSword action in terms of our feature
representation. In the action video “Lunges”, the result of
the first setting is so dim that the action would be easily
incorrectly identified. Significantly, in our class representation,
the shape of the barbell and the human are obviously shown.
In the TSN setting, the action pattern is better modeled
than the first setting, but much more irrelevant deep action
features are learned than ours. For the other two action classes,
our method also performs best. The results demonstrate that

TABLE IV

ACCURACY COMPARISON BETWEEN OUR ActionS-ST-VLAD
METHOD AND OTHER POOLING STRATEGIES ON UCF101

SPLIT 1 (ACC.(%))/ACTIVITYNET V1.2 (MAP(%))

adaptively selecting useful deep features and segmenting the
action video into ActionS-based segments are beneficial for
improving action recognition.

C. Performance of the ActionS-ST-VLAD Encoding Method

1) Accuracy Comparison: In Table IV, we compare the
proposed ActionS-ST-VLAD aggregation method with both
the classic frame-level and current video-level aggregation
strategies. The traditional max and mean pooling approaches
treat all features equally in both space and time, thus they
are unable to model the complicated spatio-temporal structure
of human actions, and the performances is poor. AdaScan [6]
exploited an adaptive scan pooling network to encode infor-
mative frames, in which a majority of non-informative frames
are discarded. Since the method to predict the discriminative
importance of each frame is not good enough, many useful
frames are removed which greatly affects its performance. Our
ActionS-ST-VLAD approach avoids this drawback and obtains
an accuracy improvement by 1.4% on UCF101 and 2.0%
on ActivityNet V1.2 respectively in the TS-Net. The Action-
VLAD [12] encoding technique concerns the sub-actions in
local clusters spatially. However, it disregards the multiple
action-stages temporally, and it also cannot sample discrimina-
tive local descriptors in each ActionS. Our ActionS-ST-VLAD
addresses these drawbacks of ActionVLAD, and a significant
gain is achieved. Specially, in the two-stream architecture,
in contrast to ActionVLAD, our result is 1.0% more accurate
on UCF101 and 1.4% more accurate on ActivityNet V1.2.

2) Efficiency Comparison: In Figure 10, we compare
the efficiency by reporting the average number of frames
per second (Fr/Sec) on HMDB51 Split 1 on a laptop with an
Intel Core (TM) CPU i7-4510U 2.60GHz and 8GB memory.
For our AVFS, the most expensive step is using the cosine
similarity (CS) measure to obtain the ActionS, since the CS
is very fast, the AVFS does not cost much time. The ASFS
contains two main steps: flow guided feature warping and
frame discriminative importance evaluation. Since we use the
multi-stream network, the optical flow has already been pre-
computed, and feature warping can be efficiently conducted
by bilinear interpolation. Besides, the similarity measure
Eq. (5), which is used to predict the discriminative importance
of each frame, is also efficient. Consequently, the proposed
AVFS-ASFS approach is not computational expensive.
Overall, the encoding speed of our ActionS-ST-VLAD is
about 85% of ActionVLAD. The AdaScan conducts the
pooling by recursively calculating two operations, i.e.,
discriminative importance prediction and weighted mean
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Fig. 10. Computational efficiency comparison (Fr/Sec) between our ActionS-
ST-VLAD pooling method and other pooling strategies on HMDB51 Split 1.
The processing speeds – number of frames per second (Fr/Sec) are reported.

TABLE V

EXPLORATION OF OUR RGBF MODALITY ON UCF101 SPLIT 1

pooling, with respect to each frame across the whole video,
thus its encoding time is high. Compared to our ActionS-ST-
VLAD, the encoding computational cost of AdaScan is about
12% more expensive.

D. Evaluation of the RGBF Modality

Results of different modalities are reported in Table V.
With the application of our RGBF modality, the accuracy
of action recognition is boosted by 0.2% compared to the
baseline two-steam architecture. At least two benefits can be
obtained from the proposed RGBF modality: first, the motion
salient regions corresponding to the acting parts of human
are enhanced. These motion discriminative regions are
crucially for recognizing human actions [21]. Second, noises
in the background are significantly compressed, reducing the
probability to wrongly classify an action.

E. Comparison With State-of-the-Art

Firstly, we compare our method (without pre-trained
on the recently Kinetics dataset [50]) to the state-of-the-
art approaches over all the three splits on UCF101 and
HMDB51 in Table VI. The results of these methods are quoted
from the original papers. Our method outperforms all of them.
In addition, the performance gain is even more significant
when integrating with the complementary video features –
iDT [27]. We classify the comparison into 4 groups from
top to bottom: 1) The results of three classical hand-crafted
methods [27], [57], [58] are presented. Notably, the iDT is
one of the most successful hand-crafted features for video-
based action recognition at present. Comparing to the most
accurate results of [58], the improvements of our method
reach to 6.5% and 6.3% on UCF101 and HMDB51 respec-
tively. 2) We select the most recent CNN methods that adopt
the two-stream architectures for comparison. These methods

do not consider long-term temporal structures of human
actions. Our method performs best among them. Especially
in HMDB51, the gain is greater than or equal to 2.5%
(71.4% vs 68.9%). The results demonstrate that pooling the
deep features across the entire video to conduct a video-
level classification is very helpful for action recognition.
3) We compare with the deep learning methods that attempt
to model the long-range temporal structure. Since the C3D
approach is hard to be updated by using new CNN architecture
and utilizing the large-size ImageNet [31] for pre-training, its
performance is the worst on UCF101. For the most related
work – ActionVLAD [12], since it does not concern the
temporal coherence of ActionS, as well as it is unable to
select informative feature maps during sampling, our results
outperform it by 2.9% on UCF101 and 4.5% on HMDB51.
For another related work – TSN, the performance of us is
also much better, where the accuracy is improved by 1.4%
(95.6% vs 94.2%) on UCF101 and 2.0% (71.4% vs 69.4%)
on HMDB51 respectively. One reason is that our proposed
ActionS-ST-VLAD considers both the different action phases
and sub-actions spatio-temporally. Secondly, we aggregate the
preserved useful features to a single video representation for
classification, while the TSN pools randomly-sampled features
in three video-snippets and average the classification scores of
these snippets. Finally, our framework is end-to-end trainable
but the TSN is not as it needs to combine the scores of
different streams for final prediction. 4) The CNN methods
that combined with iDT are chosen for analysis. The accuracy
of our method is further boosted by 0.7% on UCF101 and
1.9% on HMDB51 respectively when integrating with the iDT.
In particular, it outperforms any of the algorithm in Table VI
by at least 1.7% on UCF101 and 3.0% on HMDB51.

Moreover, we evaluate the performance of our method on
the more realistic untrimmed video dataset – ActivityNet V1.2.
Similar to [8], we apply the M-TWI strategy and the top-K
pooling to extend the action models that learned by our
ActionS-ST-VLAD method in trimmed action videos to action
recognition in untrimmed videos. In contrast to [8] which
extracts a snippet with the duration of 1 second, e.g., it sam-
ples M snippets from a video if it in length of M seconds,
we split a video to M’ action clips, where for each of the
first M’-1 action clips, we equally get it with the duration
of 10 seconds. To be fairly compared with ActionVLAD,
we replace the encoding method of our AVFS-ASFS based
ActionS-ST-VLAD with ActionVLAD, and subsequently fine-
tuning it. As shown in Table VII, the three methods, i.e.,
TSN [8], ActionVLAD [12] and Ours, which are able to
model long-range temporal structures, perform much better
than the other four approaches. For these video-level encoding
methods, our method outperforms TSN (7 seg) [8] by 1.1%.
Noticeably, it significantly boosts the performance of Action-
VLAD (90.7% vs 86.2%). The best result of our method
illustrates that it is necessary to consider the action-stages
both spatially and temporally for complex realistic videos.
Particularly for the untrimmed videos, action instance usually
spans a small portion of the entire video while the dominating
portions are irrelevant background content. Determining the
discriminative importance of each frame efficiently is a crucial



2810 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 6, JUNE 2019

TABLE VI

COMPARISON (ACC.(%)) WITH STATE-OF-THE-ART METHODS ON THE
UCF101 AND HMDB51 DATASETS (AVERAGE OVER 3 SPLITS)

TABLE VII

COMPARISONS WITH STATE-OF-THE-ARTS ON ACTIVITYNET V1.2
DATASET (RESULTS ARE REPORTED AS MAP(%))

measure to reduce the interfere of the background for action
prediction.

Secondly, we test the performance of the proposed
method where the ConvNets are pre-trained on the Kinetics
dataset. The ConvNet models of,1 which are pre-trained on
both ImageNet and Kinetics, are selected as the baseline
models of our method, and then we finetune these models
with our AVFS-ASFS based ActionS-ST-VLAD for action
recognition in trimmed video on UCF101 and HMDB51, and
in untrimmed video on ActivityNet. As shown in Table VIII,
our method performs almost equally to I3D-Two-Stream [50],
which uses two-stream 3D architectures pre-trained on
Kinetics. Because even simple 3D architectures pre-trained
on Kinetics performs better than complex 2D architectures to
recognize human actions in videos [54]. Consequently, one of
our primary work in the near future is to use 3D ConvNets
to replace the 2D ConvNets to enhance the performance.
In contrast to TSN [8] (Inception V3), our method performs
0.6% better on the UCF101 dataset, while performs 0.2%

1http://yjxiong.me/others/kinetics_action/

TABLE VIII

COMPARISONS WITH STATE-OF-THE-ARTS ON UCF101, HMDB51,
AND ACTIVITYNET V1.3 DATASETS (PRE-TRAINED ON KINETICS)

worse on the complicated ActivityNet V1.3 dataset. The results
demonstrate that the models of TSN [8] (Inception V3), which
are pre-trained on Kinetics and finetuned on UCF101 and
ActivityNet V1.3, are quite good. After fine-tuning the models
of Wang et al. [8] by our encoding method: AVFS-ASFS based
ActionS-ST-VLAD, these ConvNets are able to learn better
video-level representations on the simple trimmed videos.
For the untrimmed videos in ActivityNet, the action instance
may only occupy a small portion of one complex video,
learning a whole video-level representation may not effective
to recognize the action. In this case, there are generally
three important steps: 1) automatically splitting the long-term
videos into content-coherent clips, 2) learning a video
clip-level representation for each video clip, and 3) adaptively
aggregating these video clip-level representations. The 1) and
3) steps are crucial, our method performs slightly worse than
TSN [8] on ActivityNet V1.3 due to it focuses on the 2) step.
In contrast to the baseline algorithm ActionVLAD [12], our
method outperforms it in all the three datasets. The results
again show that our AVFS-ASFS based ActionS-ST-VLAD is
better than ActionVLAD to encode deep features, no matter
for simple or complicated realistic action videos.

The superior performance of our method reveals that split-
ting the video into effective ActionS-based segments, choosing
informative features with sampling, exploiting useful modal-
ities, and encoding features to a video (or video clip) level
representation are able to greatly enhance the performance of
the stream-networks on recognizing human actions in videos.

V. CONCLUSION

We presented a novel ActionS-ST-VLAD approach to
aggregate video features spatio-temporally for action recog-
nition with the consideration of encoding deep features
both in sub-actions spatially and in action-stages temporally.
An AVFS-ASFS strategy was proposed to split the local deep
features into different ActionS-based segments, and to select
the informative features in each segment. This strategy is
not only effective in discarding redundant/insignificant/noisy
frames that are less helpful or even harmful for the target
action, but also more efficient than the state-of-the-art [6] that
predicts the discriminative importance of each frame. A video
representation was formulated by aggregating the multiple
segment-level representations via ST-VLAD for final video-
level action classification. An RGBF modality was designed to
construct a third stream that attempts to extract motion-salient
information. The three video representations were fused at the
last convolutional layer. Finally a spatio-temporal loss function
was used to optimize our framework end-to-end. The proposed
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encoding method can be easily applied to different CNN
architectures and other video tasks. In future work, we will find
a way to learn appropriate hyperparameters, i.e., τ1, τ2, and τ3.
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