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a b s t r a c t 

The current deep learning based spatio-temporal action localization methods that using motion informa- 

tion (predominated is optical flow) obtain the state-of-the-art performance. However, since the optical 

flow is pre-computed, leading to these methods face two problems – the computational efficiency is low 

and the whole network is not end-to-end trainable. We propose a novel spatio-temporal action local- 

ization approach with an integrated optical flow sub-network to address these two issues. Specifically, 

our designed flow subnet can estimate optical flow efficiently and accurately by using multiple consec- 

utive RGB frames rather than two adjacent frames in a deep network, simultaneously, action localiza- 

tion is implemented in the same network interactive with flow computation end-to-end. To faster the 

speed, we exploit a neural network based feature fusion method in a pyramid hierarchical manner. It 

fuses spatial and temporal features at different granularities via combination function ( i.e. concatenation) 

and point-wise convolution to obtain multiscale spatio-temporal action features. Experimental results on 

three publicly available datasets, e.g. UCF101-24, JHMDB and AVA show that with both RGB appearance 

and optical flow cues, the proposed method gets the state-of-the-art performance in both efficiency and 

accuracy. Noticeably, it gets a significant improvement on efficiency. Compared to the currently most ef- 

ficient method, it is 1.9 times faster in the running speed and 1.3% video-mAP more accurate on the 

UCF101-24. Our proposed method reaches real-time computation for the first time (up to 38 FPS). 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Current spatio-temporal action localization methods focus on

rocessing untrimmed, multi-target videos rely on the popular ob-

ect detection frameworks [1] . Usually, these localization methods

erform classification on each action class and aim to detect the

uration of every single action instance. The human action is firstly

etected at the frame level, and then a dynamic linking algorithm

s used to transform a series of frame detections to generate hu-

an action tubes. We can perform spatio-temporal action localiza-

ion based on the generated action tubes. Compared to the tradi-

ional work ( i.e. dense trajectories) [2] , Convolutional Neural Net-

ork (CNN) based methods [3–5] get better performance in both

ccuracy and efficiency. Optical flow [6–8] is widely used in deep

earning frameworks to help handle the task of action localization
∗ Corresponding authors. 
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n videos [3,9] , however, none of them perform the task of local-

zation completely in an end-to-end way since they only utilize the

re-computed optical flow as a part of network input. 

The recent CNN-based optical flow methods can achieve real-

ime speed with GPU acceleration ( i.e. FlowNet [10] , FlowNet

.0 [11] ), but integrating them into an entire network to jointly es-

imate optical flow and localize human actions end-to-end is still a

ard problem. In this work, we firstly argue that a real-time action

ocalization model should be able to localize human actions spatio-

emporally without pre-computing optical flow. Secondly, optical-flow-

equired motion features and action-like features should be learned

nd fine-tuned jointly in one network to improve the performance of

ach other interactively. 

To address the first issue, we exploit a novel spatio-temporal

ction localization model, which combines the localization network

ith a CNN based optical flow estimation subnet, focuses on how

o generate good detections. The optical flow subnet can learn ef-

ective optical-flow-required features and estimate accurate optical

ow. Besides, the same backbone network is used to extract both

https://doi.org/10.1016/j.patcog.2020.107312
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107312&domain=pdf
mailto:zhangdejun@cug.edu.cn
mailto:tuzhigang@whu.edu.cn
https://doi.org/10.1016/j.patcog.2020.107312
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Fig. 1. The input of our model is a sequence of RGB frames ( a ). In the optical flow path, frames are split into consecutive frame tuples ( i.e. (im k −1 , im k ) and (im k , im k +1 ) ) 

which are taken as input by optical flow subnet ( b ). The temporal action detector ( c ) generates multi-scale temporal features ( d ) from the output of optical flow subnet. The 

spatial action detector is conducted on frame im k and outputs multi-scale spatial features. We use a fusion block ( g ) to combine temporal and spatial features to produce 

multi-scale spatio-temporal action features ( h ). Finally, a detection convolution layer is used to detect the action bounding boxes from the fused action features. 
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motion and RGB appearance deep features from the computed op-

tical flow and the original video frames (see Fig. 1 ) for the goal

of action localization. An one-stage detector [12,13] , which can de-

tect both motion and RGB features in real-time (about 37.8 FPS), is

introduced. 

To handle the second issue, we focus on how to interactively

fuse the deep features of RGB appearance and motion in the learn-

ing process effectively . For a video task, motion is an essential el-

ement and usually plays a more important role than RGB appear-

ance. Nowadays, most of the top-ranking action recognition meth-

ods adapt a two-stream architecture [14] and fuse their spatial-

stream and temporal-stream features for action classification. The

spatio-temporal action localization approaches [3,9,15] usually ap-

ply late fusion scheme ( e.g. union-set fusion and element-wise add

fusion) to combine bounding boxes of the two streams. The late

fusion is problematic as it ignores low-level features while only

focuses on high-level features leading to incorrect object localiza-

tion. To improve the drawback, inspired by SSD [16] , we apply the

multiscale prediction scheme to fuse motion and appearance fea-

tures at different scales. We propose a fusion block in a neural

network fashion, where a combination function is used to merge

spatial and temporal features and deploy 1 × 1 convolution to

make spatial and temporal information interacting with each other

to generate spatio-temporal action features ( Fig. 4 a). However, the

above method still lacks interaction between different scales, thus

we upsample the previous small size spatio-temporal features to

match their corresponding high-level information, and use point-

wise convolution to adjust the number of channels to fit the cur-

rent feature maps. Finally, the spatial, temporal and upsampled

features are combined by addition. 

Our main contributions can be summarized as follows: 

• We propose a novel method to localize human actions in

videos spatio-temporally with integrating an optical flow es-

timation subnet. The designed new architecture can perform

action localization and optical flow estimation jointly in an

end-to-end manner. The interaction between the action de-

tector and flow subnet enables the detector to learn param-
eters from appearance and motion simultaneously and guid-

ing flow subnet to compute task-specific optical flow. 
• We exploit an effective fusion method to fuse appearance

and optical flow deep features in a multi-scale fashion. It

captures semantic information in both coarse and fine lev-

els, which are useful for producing more accurate predic-

tions. Besides, the multi-scale temporal and spatial features

are combined interactively to model a more discriminative

spatio-temporal action representation. 
• The presented method achieves real-time computation at

the first time with the usage of both RGB appearance and

optical flow. Compared to the representative efficient [3] and

inefficient [17] methods, our approach achieves 1.9 times

and 9.9 times faster respectively. Additionally, our method

also outperforms the state-of-the-art method [3] , which gets

the highest efficiency to localize human action, by 1.3% in

accuracy on the UCF101-24 dataset. 

The remainder of this paper is organized as follows. Related

ork is discussed in Section 2 . Section 3 outlines the overall

ramework of our network for real-time spatio-temporal action lo-

alization and presents some implementation details, such as inte-

rated optical flow sub-network, multiscale action localization net-

ork and detection Convolution Layer. In Section 4 , we introduce

he details of our experimental evaluation setup and present the

xperimental results on two public benchmarks. Finally, the con-

lusions and future work are discussed in Section 5 . 

. Related work 

Recently, most spatio-temporal action localization meth-

ds [3,9,18] are based on CNN object detectors [16,19] . The

lassical optical flow approaches [20,21] , which are used to

ocalize human actions, are hard to be combined with action

etectors and greatly increase the running cost. In the following,

e briefly review the recent CNN-based object detectors, optical

ow methods, and spatio-temporal action localization approaches. 
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.1. CNN-based detectors 

CNNs have been successfully used for detecting ob-

ects [12,19,22] . R-CNN [23] and its extended network [19] consider

bject detection as a region propose generation and classifica-

ion problem. Faster R-CNN [19] obtains a good performance

n accuracy by using a Region Proposal Network (RPN), but it

an only process about 6 frames per second, caused by a heavy

ead network to predict the bounding boxes and the confidence

cores. To accelerate object detection speed, the one-stage detector

s introduced by YOLO [13] , which uses fixed anchor boxes to

enerate regions instead of selective search [23] and reaches, to

redict 45 frames per second. SSD [16] uses pyramidal features

o overcome the drawback of one-stage detectors which cannot

ocate small targets. Inspired by the anchor boxes of Faster R-CNN,

SD proposes similar prior boxes with multiple sizes and aspect

atios to make it is able to fit object position with more complex

hapes. SSD gets better accuracy with a still real-time detection

peed. 

.2. Optical flow networks 

CNN-based optical flow method is becoming increasingly popu-

ar [8,24] , which treats the optical flow estimation as a neural net-

ork optimization problem. FlowNet [10] is the first work to use

NN to directly predict optical flow from RGB frames and mod-

ls the prediction as a supervised deep learning problem. But the

lowNet has a weakness in the accuracy compared to the tradi-

ional optical flow methods. FlowNet2 [11] significantly boosts the

ccuracy and obtains comparable results in contrast to traditional

ethods, while only costs a small price in speed. FlowNet related

etworks require a large number of labeled ground truth to train

he parameters, however, it is hard to get the ground truth data in

eal applications. Fan [24] integrates the classical TV-L1 [21] into a

eural network to form a TVNet which can perform a basic opti-

al flow estimation efficiently without the requirement of training

arameters. Most recently, a PWC-Net [25] is exploited according

o several good practical principles: pyramidal processing, warping,

nd cost volume processing. Compared to FlowNet2, PWC-Net has

 smaller size, faster speed, and more accurate results. Importantly,

t is can be integrated into another task-specific neural network.

e utilize the PWC-Net in our integrated optical flow sub-network

o balance efficiency and accuracy. 

.3. Action localization 

The sliding window is initially used in spatio-temporal action

ocalization [26] . Gemert et al. [27] show dense-trajectories have

 powerful ability to perform spatio-temporal action localization,

ut it fails in detecting small motion. RPN is introduced for ac-

ion localization by Saha et al. [17] , Peng and Schmid [28] to gen-

rate action proposal on frame-level, and dynamic programming

s adopted to predict the video-level label. However, the efficiency

f two-stage detectors is low. One-stage detector is introduced by

urkirt et al. [3] to perform a real-time detection. ROAD [3] pro-

uces action bounding boxes for both appearance and flow frames

nd uses an online algorithm to incrementally construct and la-

el action tubes from boxes. But its speed is very low (7 fps) if

onducting detection on both motion and RGB appearance. Kalo-

eiton et al. [18] propose an Action Tubelet detector (ACT-detector)

n which the input is a sequence of frames and the output is

he tubelets. ACT also processes optical flow and RGB appearance

eparately, and cannot detect human actions in real-time. In con-

rast, we propose a novel model, which combines the appearance

nd the optical flow inside one neural network, to predict action

ounding boxes in real-time. 
. Joint action localization and motion estimation 

As shown in Fig. 1 , we propose an end-to-end action detection

etwork to predict detection boxes and their class-specific scores

or multiple RGB frames input { im k −1 , im k , im k +1 } , im ∈ R 

W ×H×3 

here W and H respectively denote the width and height of the

m . 

.1. Integrated optical flow sub-network 

We design a modified two-stream deep network to process

he visual cues of motion and appearance with shared weights

s [3,15] . The typical two-stream CNNs require the input of both

GB frames and optical flow, where the optical flow is pre-

omputed costly from the source video images, in contrast, the

nput of our magic network is only a sequence of RGB im-

ges ( Fig. 1 a). To faster the localization of human actions spatio-

emporally, we integrate the optical flow estimation network to our

etwork ( Fig. 1 b). 

We utilize PWC-Net [25] , which contains several good practices

or optical flow estimation, e.g., image pyramid, warping, and cost

olume, as the baseline of our optical flow sub-network. Let � be

 set of all the trainable parameters, f i 
�

denotes the flow field at

he i th pyramid level, and f i 
GT 

represents the corresponding ground

ruth flow field. The training loss is defined as: 

 (�) = 

I ∑ 

i = i 0 
αi 

∑ 

x 

| f i �(x ) − f i GT (x ) | 2 + γ | �| 2 (1)

here | ·| 2 computes the L2 normalization of a vector, x is the pixel

ndex, and γ | �| 2 regularizes parameters. 

We modify the PWC-Net to enable it to process a sequence

f frames to generate flow frames. We stack every two adja-

ent frames ( i.e. { im k −1 , im k } , { im k , im k +1 } ) at the channel axis to

et two 3 D tensors F 1 and F 2 , where each has a dimension of

 × H × 6. The tensor size needs to be rescaled to a multiple

f 64. We rescale W × H to 320 × 320 to form new tensors F 
′ 

1 

nd F 
′ 

2 , which are used to learn optical-flow-like features O 1 and

 2 . Flow subnet P takes two adjacent frames { im a , im b } as input

o yield the flow features f with parameters �: 

f = P ( { im a , im b } , �) (2) 

Multiple image pairs increase the model complexity, and have

 little promotion on short-term temporal information. Therefore,

e use one pair of images to estimate optical flow information to

onsider the balance between complexity and precision. 

.2. Fusion multiple optical frames 

As shown in Fig. 1 , the PWC-Net is employed to estimate optical

ow without modifying its architecture. We need to fuse the short-

erm temporal information which is generated by the PWC-Net

rom multiple optical flow frames. A convolutional layer is added

o fuse the temporal information, as shown in Fig. 2 . The fused

emporal information has an identical shape with the RGB frame.

e can reuse the weights of the backbone networks to detect ac-

ion instances. By using the flow subnetwork, we can achieve com-

arable results in real-time on a single GPU. 

.3. Multiscale action localization network 

We follow the footstep of the one-stage object detec-

or [13,16] to predict bounding boxes and confidence scores simul-

aneously without using RPN. We use the shared weights network

Deeplab-VGG16 to learn spatial and temporal deep features and

use them in multiscale in fusion blocks to form spatio-temporal
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Fig. 2. Our optical flow subnet ( b ) takes two pair RGB frames ( a ) as input and generates one pair flow frames ( c ). In the fuse convolutional layer ( d ), we use convolution 

to change the shape of flow frames from W × H × 6 to W × H × 3. Therefore, the flow frames is encoded as fused temporal information which can be processed by the 

backbone network. 

Fig. 3. The multiscale feature maps are generated from the Deeplab-VGG16 backbone [29] and the extra layers. We use the shared weights backbone and the extra layers 

to compute features for the spatial stream and temporal stream. From the first to the sixth levels, the number of feature channels are respectively {512, 1024, 512, 256, 256, 

256}. 
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feature maps. The feature maps contain detailed hierarchical in-

formation, which is useful for the convolutional detection layer to

better predict the bounding boxes and their class-specific confi-

dence scores. 

3.3.1. Spatial path backbone 

The spatial path backbone ( Fig. 1 e) computes appearance con-

volutional features from im k . We preprocess im k to meet the re-

quirement of the spatial backbone ( i.e. resize and mean subtrac-

tion). After the forward propagation of Deeplab-VGG16 backbone

network [29] and the extra layers (see in Fig. 3 ), we can ob-

tain a sequence of multiscale appearance feature maps { m 

a 
1 
, ..., m 

a 
K 
}

( Fig. 1 f). From the first to the sixth levels, the number of feature

channels are respectively {512, 1024, 512, 256, 256, 256}. The spa-

tial action detector models the appearance information as follows:

M 

a = F ( im k , W b ) (3)

where { m 

a 
1 
, ..., m 

a 
K 
} ∈ M 

a . F(·, ·) is a function represents a ConvNet

with parameters W b which operates on frame im k to produce mul-

tiscale spatial features M 

a . 
.3.2. Temporal path backbone 

We use bilinear upsampling to resacle the size of { O 1 , O 2 } to

 × H . To reuse the neural network parameters from spatial ac-

ion detector, we stack { O 1 , O 2 } at channel and perform a 1 × 1

ointwise convolution on above tensor O . We feed O into the tem-

oral action detector ( Fig. 1 c), which shares weights with spatial

ction backbone, to learn the multiscale optical flow feature maps

 m 

of 
1 

, ..., m 

of 
K 

} ( Fig. 1 d). The temporal action detector models the

ptical-flow-like information as follows: 

 

of = F ( f, W b ) (4)

here { m 

of 
1 

, ..., m 

of 
K 

} ∈ M 

of . F(·, ·) is a ConvNet function with pa-

ameters W b , which is used to operate on flow feature map f to

xtract multiscale temporal features M 

of . 

.3.3. Multiscale feature fusion block 

The multiscale feature fusion block is an important component

n our spatio-temporal action detector. Previous works [3,18] nor-

ally fuse appearance and optical flow action bounding boxes

tubelets) by using union fusion and late fusion. However, they

nly combine the detected boxes at frame level rather than fus-
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Fig. 4. ( a ) Element-wise fusion: we use the combination function (concatenate, sum and average) to combine the temporal and spatial deep features. 1 × 1 Convolution is 

deployed to exchange information between channels, thus we can obtain a multiscale spatio-temporal action feature. ( b ) FPN-like fusion: we upsample the spatio-temporal 

action feature map from a previous small scale to match the size. 1 × 1 convolution is used to match the channel of the current spatio-temporal action feature. According 

to FPN [30] , we combine these feature maps by addition to generate a spatio-temporal action feature representation. 
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ng the extracted features. Instead, we present an effective neu-

al network-based feature aggregation block G to fuse spatial and

emporal features in a pyramid multiscale manner ( Fig. 4 ). We

an implement the fusion block in two ways: element-wise fusion

 Fig. 4 a) and pyramid fusion ( Fig. 4 b). Element-wise fusion uses

he element-wise function ( i.e. average) to combine tensors. The

eural network is introduced into element-wise fusion to interact

etween channels. Pyramid fusion utilizes the small scale feature

aps to enhance the semantic information of finer scale feature

aps. 

Element-wise fusion. Element-wise fusion contains two parts:

ombination function and fusion function. Combination function com-

ines spatial and temporal features by element-wise computation.

usion function uses a neural network to make features interacting

etween channels. 

 

(
M 

a , M 

of 
)

= 

K ∑ 

i =1 

S 
(
C 
(
m 

a 
i , m 

of 
i 

)
, W p 

)
(5) 

 ( ·, ·) denotes a combination function that aims to incorporate two

ensors into one. S ( ·, W p ) represents a neural network with pa-

ameters W p to fuse spatial and temporal features. 

Combination function . We test three types of combination func-

ions: concatenate, sum and average. 1) Concatenate : It can re-

erve all the information from both appearance and optical flow

treams, leading the neural network to learn better representation.

) Sum : By deploying an element-wise addition function to fuse

patial and temporal features, and getting the superposition of dis-

riminative features from both streams. 3) Average : one alternative

ay to add function which merges tensors to balance the response

rom two streams. 

Fusion function . We can obtain ˆ m i by using different types of

ombination function C , but ˆ m i lacks the interaction between chan-

els, resulting in appearance and motion information cannot be

ell exchanged. To handle this problem, in this work, the element-

ise convolution is introduced to fuse features between channels

nd reduce channel numbers ( i.e. concatenate function): 

 = S 
(

ˆ m , W p 

)
(6) 

here m denotes the set of multiscale spatio-temporal action fea-

ures, i.e., { ̂  m , ..., ˆ m } ∈ ˆ m . 
1 k 
Spatio-temporal feature pyramid fusion. Element-wise fusion 

akes feature interacting between spatial and temporal paths,

ut it lacks the interaction between different scales. Inspired by

PN [30] , we use a high-level feature map to enhance the se-

antic information of a low-level feature map, making features

nteract between scales. The multiscale block, which called the

patio-temporal feature pyramid (STFP) fusion, involves a bottom-

p pathway, a top-down pathway, and lateral connections. 

Bottom-up pathway. The bottom-up pathway uses feed-forward

ackbone CNN to compute features. As we aim to perform predic-

ion at multi-scales, we use different stage outputs of the backbone

NN which are grouped by scales { m 

a 
1 
, ..., m 

a 
K 
} and { m 

of 
1 

, ..., m 

of 
K 

} .
or the two-stream network, we build two shared weights bottom-

p pathway p a and p of , which are dubbed RGB pathway and optical

ow pathway, to extract features. 

Top-down pathway. The top-down pathway upsamples the low-

esolution and strong semantic feature map to next finer-scale ( i.e.

9 × 19 → 38 × 38). An element-wise convolution is introduced

o adjust the channel of the former spatio-temporal feature map

 i −1 . 

Lateral connections. We build the block to construct our feature

aps with lateral connections. We merge the upsampled spatio-

emporal feature map m i −1 with RGB pathway feature m 

a 
i 

and op-

ical flow pathway m 

of 
i 

by element-wise addition. The designed

lock is used to combine high-level and high-resolution semantic

nformation, in this way, our model becomes more robust and can

etect small objects more accurately. 

 

(
M 

a , M 

of , W p 

)
= 

K ∑ 

i =2 

U(m i ) + 

K ∑ 

i =1 

(
m 

a 
i + m 

of 
i 

)
(7) 

here U ( · ) denotes an adjustment function that uses upsample

nd point-wise convolution to adjust the size of spatio-temporal

eature maps with parameter W p . 

.4. Detection Convolution Layer 

Due to the good performance of SSD [16] and RFB Net [12] ,

e use the same cascade prediction layers as them ( Fig. 1 i). Dif-

erently, the input RGB feature maps are replaced by our spatio-

emporal action features m . The detection layer outputs the action
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Table 1 

Comparison (F-mAP) of different flow subnetworks on 

UCF-101-24. (The IoU threshold is set to 0.5). 

Flow Subnetwork F-mAP@0.5 Time(millisecond) 

PWC-Net [25] 67.7 6 

FlowNet2 [11] 58.6 60 

FlowNet2S [11] 38.7 2 

Brox Flow [20] 56.8 110 
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classes and the coordinate offsets ( Fig. 1 j), thus every feature map

is D i ∈ R 

p×l×b×(c+4) , where p and l denote width and height of D i , b

is the default boxes of the RFB Net, and c + 4 represents the action

classes c and the coordinate offsets. 

3.5. Training loss 

We modify the loss function of RFB Net by adding the param-

eter of the integrated optical-flow sub-network, shown as follows:

L = L con f + L reg + L (�) (8)

where L conf and L reg are the class confidence loss function [16] and

the 2D bounding box coordinate regression loss function respec-

tively. L ( �) is the integrated optical-flow sub-network loss function

with parameter �, defined in Eq. (1) . It should be noted that we

freeze the parameters of optical-flow sub-network at the beginning

of training. 

4. Experiments 

In this section, extensive experiments are conducted to test

the proposed method whether it is able to effectively localize hu-

man actions spatio-temporally in real-time on the widely used

untrimmed video dataset UCF101-24 [31] , a fully annotated dataset

JHMDB [32] , and the atomic action dataset AVA [15] : 1) evaluat-

ing the performance of the exploited multiscale fusion strategy; 2)

comparing the accuracy of our method with the state-of-the-arts;

3) analyzing the running speed of the whole network with joint

tasks. The code is publicly released in our community site 1 . 

4.1. Dataset 

UCF101-24 , which is a subset of UCF101 [31] with spatio-

temporal labels, is one of the largest and most challenging action

datasets for spatio-temporal action localization. Each video may

contain multiple action instances with same action class. UCF101-

24 is composed of 24 classes with 3207 videos which is corrected

by Singh et al. [3] . Following with previous works [3,9,18] , we re-

port the experiment results on the first split. 

JHMDB [32] contains 928 videos with 21 actions. All the action

videos are trimmed. We report the frame-mAP results averaged on

the three splits. 

AVA [15] is a video dataset of atomic visual action which con-

tains 80 action classes sampling at 1 fps. Following the evalua-

tion protocol [15] , we report the most frequent 60 classes and the

frame-level mAP. 

4.2. Metrics 

We use the intersection-over-union (IoU) metric at the frame

and video level to evaluate the performance of spatial and tem-

poral localization. For frame level, we follow the standard proto-

col used by PASCAL VOC object classes challenge [33] and report

the average precision (AP) using an IoU threshold of 0.5. For the

whole dataset, we report the mean average precision (mAP) over

all classes. For video level, we compute the spatio-temporal IoU

between the ground truth tube and linked detection tubes (the

linking method is defined in [3] ) with the threshold of 0.5, we also

report the mAP (video) over all classes. 
1 https://github.com/djzgroup/RT-ST-Action-Localization 

p  

i  

m  
.3. Implementation details 

We use the ImageNet pretrained model to initialize the back-

one network of RFB Net [12] . The integrated flow subnet uses the

eights offered by Sun et al. [25] . We perform data augmentation

o the frames (both flow and appearance streams with the same

ettings). Specially, we use photometric distort, random crop, ran-

om mirror, and channel swapping. The implementation is carried

n Pytorch. We train our model on a 4-GPU machine and each GPU

ith 11 GB VRAM has 10 sequences in a mini-batch (so in total

ith a mini-batch size of 40 sequences). We compute the gradients

rom all GPUs and perform backpropagation on the main GPU, the

thers copy the weights from the main GPU. The learning rate of

GD with momentum is set to 0.001 and decreases by 0.1 at 30k,

0k and 100k iterations. The momentum and weight decay rate of

GD is set to 0.9 and 0.0 0 05 respectively. We stop the training af-

er 150k iterations. The model is trained in an end-to-end fashion,

nd we first freeze the weights of the integrated optical flow net-

ork and then unfreeze weights after the loss stable. The length K

f input RGB frames is 3. 

.4. Optical Flow Subnetworks Comparison 

In this subsection, we evaluate four kinds of optical flow sub-

etworks, i.e., PWC-Net [25] , FlowNet2 [11] , FlowNet2S [11] , and

rox Flow [20] . To be fair, we input the images with the same res-

lution (320 × 320) to the flow subnetwork and set the parame-

ers of flow subnetworks with pretrained weights. We report the

rame-mAP (F-mAP) on UCF-101-24 dataset in Table 1 . 

From Table 1 , we can find that the neural network based flow

ubnetworks ( i.e. PWC-Net, FlowNet2) are faster than the tradi-

ional optical flow algorithms ( i.e. Brox Flow). FlowNet2 has almost

he same accuracy as Brox Flow [20] while costs much less time.

lowNet2S only needs 2ms to compute an optical flow, but its re-

ult is the worst. PWC-Net gets the highest F-mAP and costs 6ms

o estimate optical flow. Consequently, we choose the PWC-Net as

he flow subnetwork in our method. 

.5. Multiscale fusion method study 

In this subsection, we focus on the study of multiscale fusion

ethod. For fair comparison, we unfreeze the flow subnet at 75k

terations and stop training at 150k iterations. We evaluate four

ultiscale fusion methods: (1) M-Concat. (i.e. M-Concatenate ), (2)

-Sum , (3) M-Average , and (4) STFP. M-Concat., M-Sum and M-

Average belong to element-wise fusion reported on UCF-101-24.

he experimental results are shown in Table 2 . 

Firstly, from the bottom part of Table 2 , we can find that M-

oncat. fusion achieves the best performance. Since UCF101-24 in-

ludes many big targets, we can infer that the interaction between

patial and temporal deep features is more important than the

nteraction between scales. In particular, the interaction between

patial and temporal information is very useful to improve the

erformance of action prediction in case that the prediction heav-

ly relied on temporal information. The interaction between scales

ainly boosts the detection performance of small targets which is

https://github.com/djzgroup/RT-ST-Action-Localization
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Table 2 

Comparison of different fusion blocks on UCF-101-24. (The IoU threshold is set to 

0.5). 

Method Fusion Multiscale F-mAP@0.5 V-mAP@0.2 

M-Concat. � 37.8 39.1 

M-Concat. � 11.7 18.9 

M-Concat. � � 67.7 74.8 

M-Sum � � 55.9 64.1 

M-Average � � 58.9 67.9 

STFP � � 56.3 66.0 

Table 3 

Comparison (frame-mAP) to the state-of-the-arts on the UCF-101-24 dataset. (The 

IoU threshold is set to 0.5). 

Method Detector mAP@0.5 

Weinzaepfel et al. [34] R-CNN 35.8 

Peng et al. (w/o MR) [28] Faster R-CNN 64.8 

Peng et al. (w/ MR) [28] Faster R-CNN 65.7 

Hou et al. [35] Tube Proposal 41.4 

Ours RFB Net 67.7 
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Table 4 

Comparison (frame-mAP) to state-of-the-art on JHMDB. (The IoU threshold is set to 

0.5). 

Method Detector mAP@0.5 

Weinzaepfel et al. [34] R-CNN 45.8 

Gkioxari et al. [36] R-CNN 36.2 

Peng et al. (w/o MR) [28] Faster R-CNN 64.8 

Hou et al. [35] Tube Proposal 47.9 

Ours RFB Net 37.4 

Table 5 

Comparison (frame-mAP) to the state-of-the-arts on the AVA dataset. (The IoU 

threshold is set to 0.5). The last column indicates the frames per second (FPS). “∗”

means the method uses RGB and optical flow to detect action. 

Method mAP@0.5 FPS 

Single frame ∗ [15] 13.7 ~ 5 

I3D 

∗ [15] 15.6 ~ 1 

ARCN 

∗ [38] 17.4 ~ 1 

STEP [37] 18.6 21 

Ours ∗ 15.2 37.8 

Table 6 

Comparison (video-mAP) to the state-of-the-arts with different IoU thresholds on 

the UCF-101-24 dataset. The fifth column 0.5: 0.95 corresponds to the average 

video-mAP for the thresholds with a step of 0.05. The last column indicates the 

frames per second (FPS). 

IoU threshold 0.2 0.5 0.75 0.5:0.95 FPS 

Yu et al. [39] 26.5 – – – –

Weinzaepfel et al. [34] 46.8 – – – –

Saha et al. [17] 66.6 36.4 7.9 14.4 4 

Peng(w/o MR) et al. [28] 71.8 35.9 1.6 8.8 –

Peng(w/ MR) et al. [28] 72.9 – – – –

TPN (w/o LSTM) [9] 70.3 – – – –

TPN (w/ LSTM) [9] 71.6 – – – –

ROAD (w/ real-time OF) [3] 42.5 13.9 0.5 3.3 28 

ROAD (w/ OF) [3] 73.5 46.3 15.0 20.4 7 

Hou et al. [35] 47.1 – – – –

Kalogeition et al. [18] 76.5 49.2 19.7 23.4 5.7 

Yang et al. [37] 76.6 – – – 23 

Ours 74.8 46.6 16.7 21.9 37.8 
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ot the majority in UCF101-24. M-Concat. can maximize the reten-

ion of spatial and temporal features due to it concatenates tensors

nto one. While other fusion methods, which use element-wise ad-

ition or average function, blur the spatial and temporal informa-

ion and leading to bad performance. 

Secondly, the performance of the fusion method and the non-

usion method is compared. As shown in Table 2 , with the us-

ge of any one of the four multiscale fusion approaches, the ac-

uracy is improved by at least 44.2% (55.9% vs 11.7%) and 45.2%

64.1% vs 18.9%) on F-mAP and video mAP (V-mAP) respectively.

e can infer that our detection network is unable to learn good

epresentations if we don’t fuse spatial and temporal features. The

esults prove that our fusion strategy greatly improves the confi-

ence score and IoU overlaps of the detection boxes. 

Thirdly, we compare the performance of the fusion method us-

ng or without using the multiscale strategy. Under the same fu-

ion strategy, our multiscale strategy improves the frame and video

AP by 29.9% (67.7% vs 37.8%) and 35.7% (74.8% vs 39.1%) respec-

ively. The results demonstrate that the multiscale strategy offers

he more discriminate features to generate detection boxes. 

Accordingly, we choose the M-Concat. fusion with a multiscale

trategy as our default setting due to it can well balance speed and

ccuracy. 

.6. Comparison with state-of-the-art 

We compare the proposed approach with several state-of-the-

rt methods. It should be noted that previous works reported

n this subsection use RGB and optical flow to perform spatio-

emporal action localization if not specified. 

.6.1. Frame-mAP 

We report the UCF-101-24 frame-mAP results in Table 3 . The

-CNN [23] based method [34] , the Faster R-CNN [19] based ap-

roaches [28] , and the tube proposal scheme [35] are selected for

omparison. For [28] , we report the experimental results with and

ithout the multi-region method. Our approach achieves 67.74%

AP with the IoU threshold of 0.5, and outperforms [28,34,35] for

t least 31.9% due to our unified detection network uses the in-

egrated flow subnet and multiscale fusion block. [28,34,35] lack

he capacity of fusing spatial and temporal features in the neural

etwork. Our model achieves the fastest speed in experiments and

omparable results. The frame-mAP result of JHMDB is shown in

able 4 . Our method performs better than [36] but has a big gap

ith state-of-the-art. We obtain high accuracy on the training split
hile getting a poor result on the testing split. The reason is that

he small amount of videos in JHMDB leads to our model is un-

ble to learn good feature representation. The results on the AVA

ataset are shown in Table 5 . Our method gets approximate re-

ult with other approaches in accuracy. While for efficiency, our

odel is much faster than the clip based [37] (21 fps) and the

rame base [15] methods (5 fps). Fig. 5 shows our bounding boxes

egression results. 

.6.2. Video-mAP 

We report the video mAP results on the UCF-101-24 dataset in

able 6 . We follow the protocol of [3] and present the results with

ifferent IoU thresholds 0.2, 0.5, 0.75. Specifically, 0.5: 0.95 denotes

he average video-mAP corresponding to the threshold changes via

 step size 0.05. At 0.2, our approach performs much better than

18,28,34,35,39] where with a large improvement by more than

5.2%, besides, it also outperforms the state-of-the-arts that rely

n SSD [3] . Compared to [17,18,28,34,35,37,39] , our exploited ap-

roach, which takes advantage of a supervised unified network

ith integrated flow subnet and multiscale feature blocks, exhibits

etter frame detection ability. For the previous works in Table 6 ,

nly [3,37] focused on the balance between speed and accuracy.

ur method gets the fastest detection speed and comparable accu-

acy on the UCF-24 dataset. 
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Fig. 5. Examples of regressed bounding boxes (red) and the ground truth (green). We can find our model have a bad performance on the Scenarios that contain multiple 

people. But our model have good regression performance in single person scene. 

Fig. 6. Comparison of running speed. Real-time OF (optical flow) refers to the real-time optical flow method [40] . 

 

 

 

i  

t  

i  

p  

b  
4.7. Running time analysis 

We test the running speed of our method to evaluate whether

it can localize human actions spatio-temporally in real-time with

the usage of both RGB and optical flow. Previous action local-
zation works normally use fast optical flow methods ( i.e. real-

ime OF [20] and [40] ) to generate pre-compute optical flow,

n which the optical flow estimation and action localization are

erformed separately. However, this kind of method is far from

eing implemented in real-time. In contrast, we perform action
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[  
ocalization and motion estimation in a unified network. To be fair,

e compare our approach with the state-of-the-art two-stream

orks [3,17] on a desktop with two Intel Xeon CPU @3.2GHz (to-

ally 16 cores) and an NVIDIA GEFORCE GTX 1080Ti GPU. It should

e noticed that the detection network cost time is twice larger

han reported in [3] , because Singh et al. utilizes two GPUs to com-

ute RGB steam and optical flow (OF) stream respectively, we con-

ert the cost time to one GPU scheme. We use the same tube gen-

ration algorithm as Singh et al. [3] , which is efficient for both of

ur approach (2.5ms without boxes combining) and their model

3.0ms with boxes combining). 

The results of the running speed of different methods are

hown in Fig. 6 . [3,17] cost much time on optical flow computa-

ion and object detection. In the real world applications, the com-

utation time of the traditional optical flow methods [20,21] is

nacceptable. Singh et al. run RGB stream SSD and flow stream

SD on two GPUs simultaneously, leading to it is low-efficient and

s hard to combine detection boxes to perform video-level pre-

iction. In contrast, our approach integrates optical flow estima-

ion into the detection network and produces spatial and tempo-

al features in the same network with a single GPU. The proposed

ethod not only achieves a real-time speed of 37.8 FPS which

s much faster than all the other methods but also obtains the

ighest accuracy. Our detection network costs 24.1ms to gener-

te action detection boxes from both RGB and flow paths, which

utperforms the currently most efficient and inefficient methods

y respectively 1.9 times and 9.9 times speed improvement. Spe-

ially, compared to ROAD [3] , which applies the classical Brox

F [20] and gets the highest efficiency to localize human action

efore us, our approach is 1.9 times faster (19.6 FPS vs 37.8 FPS) in

mplementation and with a 1.3% video-mAP improvement. Com-

ared to the low efficient methods [17] which use a two-stage ac-

ion detector, our method is more than 9.9 times faster (3.8 FPS

s 37.8 FPS) and gets at least 8.2% video-mAP promotion. Ben-

fited from our unified network, optical flow is efficiently and

ccurately computed in the action localization framework jointly.

urthermore, the action bounding box is fast predicted due to spa-

ial and temporal features can be computed and fused in the same

etwork. 

. Conclusions 

In this paper, we proposed a novel spatio-temporal action lo-

alization approach with integrated optical flow subnet to address

he issues: 1) localizing human action instances with the usage of

oth RGB appearance and optical flow in real-time, 2) perform-

ng optical flow computation and action localization in one multi-

ask deep architecture jointly, and 3) demonstrating that these two

asks, which are performed interactively, are beneficial for each

ther. We conducted extensive experiments on a number of bench-

ark datasets (i.e. UCF101-24, JHMDB and AVA), and the results

how that our approach gets better performance than existing ap-

roaches for online applications. We also provided experimental

nalysis to explain why our approach performs better than other

pproaches in speed and accuracy. 

The structure of neural network plays an important role in

peeding up the detection of human action in videos. Inspired by

he recently novel CNNs and free-anchor object detection meth-

ds, in future work, we will explore other methods to improve

he accuracy without slowing down the calculations. Specifically,

e would like to replace the spatial and temporal backbone net-

ork with 3D CNN. Moreover, we plan to adopt a strategy similar

o RPN, which can be optimized in a unified neural network, link-

ng the actor-boxes to the tubes rather than using traditional object

etection methods. 
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