
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#2928

ICCV
#2928

ICCV 2019 Submission #2928. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

SO-HandNet: Self-Organizing Network for 3D Hand Pose Estimation with
Semi-supervised Learning

Anonymous ICCV submission

Paper ID 2928

Abstract

In the past several years, 3D hand pose estimation
has made significant progress, where Convolutional Neu-
ral Networks (CNNs) play a critical role. However, most of
the existing CNN-based hand pose estimation methods de-
pend much on the training set, while labeling 3D hand pose
on training data is laborious and time-consuming. Inspired
by the point cloud autoencoder presented in self-organizing
network (SO-Net) [16], our proposed SO-HandNet aims at
making use of the unannotated data to obtain accurate 3D
hand pose estimation in a semi-supervised manner. We ex-
ploit hand feature encoder (HFE) to extract multi-level fea-
tures from hand point cloud and then fuse them to regress
3D hand pose by a hand pose estimator (HPE). We de-
sign a hand feature decoder (HFD) to recover the input
point cloud from the encoded feature. Since the HFE and
the HFD can be trained without 3D hand pose annotation,
the proposed method is able to make the best of unanno-
tated data during the training phase. Experiments on three
challenging benchmark datasets validate that our proposed
SO-HandNet can achieve superior performance in semi-
supervised training for 3D hand pose estimation.

1. Introduction

Hands are effective and intuitive parts of human body
in our daily activities. Automatic real-time 3D hand pose
estimation has attracted a lot of attentions because of many
applications such as Human-Computer Interaction (HCI),
computer graphics and virtual/augmented reality, etc.

After many years of intensive research, 3D hand pose
estimation has advanced significantly both in accuracy and
efficiency [5, 7, 9, 10, 11, 12, 19, 20, 21, 22, 26, 30, 32, 33,
35, 37]. Most of the recently proposed 3D hand pose esti-
mation methods are based on convolutional neural networks
(CNNs) which are now the foundation of many state-of-the-
art computer vision algorithms. Since CNNs perform well
in processing images, many works modify 2D CNNs to deal

Figure 1. Overview of our proposed SO-HandNet for 3D hand
pose estimation. In the training phase, we simultaneously use
the annotated data and unannotated data to train the model. The
depth image is first converted to point cloud, and the hand fea-
ture encoder (HFE) encodes the sampled and normalized points
into multi-level features. For training data with 3D hand annota-
tion, the global feature and node features are fused to regress hand
pose via the hand pose estimator (HPE) and the loss of 3D hand
pose can be computed. Meanwhile, the global feature is fed into
the hand feature decoder (HFD) to generate a point cloud which is
compared with the original point cloud, and a point cloud Chamfer
loss is computed. We join up the two loss to optimize the network.
For training data without 3D pose annotation, we use the point
cloud Chamfer loss to optimize the HFE and HFD. In the testing
phase, the HFE and the HPE are utilized to estimate 3D hand pose.

with depth images [33] or their 2D projections[10]. How-
ever, features extracted by 2D CNNs are not directly suit-
able for 3D pose estimation due to the lack of 3D spatial
information. To better capture the geometric characteristics
of depth data, recent studies [11, 19] convert depth images
to 3D volumetric representations and then use 3D CNNs to
estimate hand pose. However, the 3D volumes have rather
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larger memory and computation requirements. Although
these methods have achieved significant progress in esti-
mation accuracy, they usually require large amount of fully
annotated training data that are difficult to obtain. Only
few methods [3, 28, 34] have considered to use unannotated
data for training hand pose estimation networks. [28] and
[34] use generative deep neural network with a shared latent
space to learn hand model. [34] attempts to learn a mani-
fold of hand poses via a combination of variational autoen-
coder and generative asversarial networks. However, their
method requires a mapping function between two separate
mainfolds which makes the network difficult to train. [28]
proposes to learn a single laten space from images, which
cannot fully utilize 3D information in depth images. [3]
leverages synthesized data to enrich existing datasets, but
synthetic depth maps are different from real-world data.

To tackle these problems, motivated by the recent work
of SO-Net [16] which utilizes the spatial distribution to per-
form hierarchical feature extraction for point cloud and pro-
poses a point cloud autoencoder as pre-training to improve
network performance, we aim at regressing 3D hand pose
directly from 3D point cloud and using point cloud autoen-
coder mechanism in semi-supervised training stage. [9] is
the first work to regress hand pose directly from 3D point
cloud. Compared with PointNet++ [25] in [9], the self-
organizing network in our HFE perfoms hierarchical fea-
ture extraction with systematically adjust the receptive field
overlap. Accordingly, the feature encoder of our method
is able to reveal the spatial distribution of the input point
cloud. Most importantly, we apply an autoencoder struc-
ture whose decoder recovers point cloud from the global
representation of point set. To learn a more discriminative
global feature, we compare the recovered point cloud with
the original point cloud. Therefore, we are able to combine
annotated data with unannotated date to train the network.
This semi-supervised training strategy could benefit from a
small annotated training set. The idea of autoencoder has
been recently applied to the hand pose estimation task [28].
Different with our method, they directly deal with RGB im-
age or depth image.

As illustrated in Figure 1, we propose an end-to-end re-
gression method for 3D hand pose estimation from a single
depth image. The depth image is first converted into a set
of 3D points. Then the point set is sampled and normal-
ized before fed into the network. An encoder is utilized to
encode the input point cloud into a global feature through
a hierarchical extraction mechanism, and intermediate fea-
tures which are called node features are also collected. Both
the global feature and node features are used for the 3D
hand pose estimation. Additionally, in the training phase,
the obtained global feature can reconstruct a point cloud to
compare with the original input point cloud. Thereby, we
optimize the representation ability of the global feature by

minimizing the gap between the reconstructed and original
point cloud. The advantages of the proposed method are
obvious when applied to the case that part of the training
set is annotated and the rest is unannotated. In this condi-
tion, we use the labeled data to train the whole network and
the unlabeled data to help train the encoder and decoder. In
summary, our method has the following contributions:
•We propose to estimate 3D hand pose directly from 3D
point cloud with semi-supervised learning.We design a
semi-supervised training strategy which uses few annotated
data to train the whole pipeline and makes full use of unan-
notated data to optimize the network.
• For 3D hand pose estimation, a novel point cloud encoder-
decoder mechanism is presented to extract and evaluate fea-
tures. The self-organizing encoder models the spatial distri-
bution of point cloud by hierarchically extracting features
guided by a self-organized map. The decoder reconstructs
hand point cloud from the encoded global feature, which
helps to learn the point cloud encoder.
•We conduct comprehensive experiments on three hand
pose estimation datasets. Experimental results show that
our proposed SO-HandNet performs better than recent
semi-supervised methods. Besides, it outperforms or is
comparable with state-of-the-art fully-supervised methods.

2. Related works
Hand Pose Estimation. The field of depth-based hand

pose estimation has become attractive thanks to the sig-
nificant advance and progress of cost-effective depth sen-
sors, such as Microsoft Kinect [39] and Intel RealSense
[14]. Methods of depth-based hand pose estimation can be
categorized into generative approaches, discriminative ap-
proaches and hybrid approaches. Comprehensive review
of hand pose estimation can be found in [31, 38]. Our
3D hand pose estimation method is related to discrimina-
tive approaches with application of deep neural networks.
Tompson et al. [33] firstly apply CNNs in hand pose esti-
mation task. They train CNNs to output heat-map images
and then infer the corresponding 3D hand pose. However,
3D spatial information is lost in 2D heat-maps. Ge et al.
[10] address this issue by projecting the depth images onto
multi-views and then recovering 3D coordinates from mul-
tiple heat-maps. Guo et al. [12] propose a region ensemble
network (REN) which divides feature maps into several re-
gions and fuses regional features to regress hand pose. Ge et
al. [11] encode point cloud as 3D volumetric representation
of hand and use 3D CNNs to directly regress 3D hand pose.
Ge et al. [9] propose a Hand-PointNet to directly process
the 3D point cloud for hand pose estimation, and design a
fingertip refinement network to refine the fingertip location.
Moon et al. [19] exploit voxel-to-voxel predictions that use
a 3D voxelized grid and estimate the per-voxel likelihood
for each keypoint. Additionally, there are methods com-
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bine semantic segmentation [6], augment data in the skele-
ton space [3] and guide learning by synthetic images [26].
Recently, semi-supervised learning has been employed to
hand pose estimation task. Wan et al. [34] use two deep
generative models with a shared latent space to model the
statistical relationships of depth images and corresponding
hand poses. They design an architecture which learns from
unlabeled data in a semi-supervised approach. Spurr et al.
[28] propose to learn hand model by a cross-modal trained
latent space via a gennerative deep neural network. They
also make use of unlabeled data via cross-training. Our
method is inspired by [9], but is essentially different from it.
Multi-scale and multi-resolution grouping are employed to
combine features from multiple scales. Besides, our feature
encoder can explicitly models the spatial distribution of the
input point set. Moreover, the proposed method designs a
semi-supervised training mode for specific case.

3D Deep Learning. 3D deep learning is rising along
with big 3D datasets such as ShapeNet [4] and ModelNet
[36] were constructed since 2015. 3D data can be repre-
sented as rasterized form (e.g., multi-view images and vol-
umetric) or geometric form (e.g., polygonal mesh, point
cloud and primitive-based CAD models), and there are deep
learning methods [13, 15, 18, 23, 24, 25, 27, 29, 36] to pro-
cess them. Our work is closely related to methods that di-
rectly take point cloud as input. Qi et al. [23] present Point-
Net which is the pioneer in directly processing point cloud
by deep learning. They use symmetric max pooling to ag-
gregate local point features into a global descriptor which is
invariant to the permutation of the input points. Later, they
design PointNet++ [25] to group points into several groups
in different levels to hierarchically extract feature from dif-
ferent scales. By combining and modifying the prior work
PointNet [23] and NetVLAD [2], Uy et al exploit a Point-
NetVLAD method [1]. This deep network allows end-to-
end training and inference to extract the global descriptor
from the input 3D point set. Li et al. [17] present PointCNN
which uses typical CNNs to learn features from point cloud.
In SO-Net [16], Li et al. present a permutation invariant
self-organizing network (SO-Net) which explicitly models
the spatial distribution of input point cloud during feature
extraction. The receptive field of the network can be sys-
tematically adjusted by conducting point-to-node k nearest
neighbor search. In this paper, we use an architecture like
SO-Net to perform hierarchical feature extraction from in-
put point cloud. More details about SO-Net is given in Sec-
tion 3.1.

3. Methodology
Similar to [9], our hand pose estimation approach is a

regression-based method. Generally, the hand pose regres-
sion method takes a depth image containing a hand as input,
and outputs the estimated locations of the 3D hand joints in

the camera coordinate system (C.S.). The hand depth image
is converted into a set of 3D points, and the points are sam-
pled and normalized before inputted to the network. In this
work, we display a pipeline which consists of three parts.
The HFE is exploited to perform hierarchical feature extrac-
tion, and then the HPE is used to fuse multi-level features to
regress the 3D hand pose. In addition, we utilize the HFD
to optimize the feature encoding procedure in the training
phase.

In the following, we first briefly introduce the pipeline
of point cloud preprocessing and review the mechanism of
the SO-Net which is designed for point cloud analysis, then
describe our proposed hand pose estimation method.

3.1. SO-Net Revisited

SO-Net [16] is a type of permutation invariant architec-
ture for deep learning with unordered point clouds. The
network models the spatial distribution of a set of points
by building a self-organizing map (SOM), and then per-
forms hierarchical feature extraction on individual points
and SOM nodes, finally produces a discriminative feature
of the input point cloud. As shown in Figure 2, a SOM with
size of M = m × m is built to produce two-dimensional
representation of the input N points. The SOM is con-
structed via unsupervised competitive learning approach.
Given the output of the SOM, a point-to-node k nearest
neighbors (kNN) search is conducted. In this process, kNN
are searched on the SOM nodes S for each point pi. By
subtraction with the associated nodes, each pi is normal-
ized into k points, accordingly the point cloud is trans-
formed into kN normalized points. A series of fully con-
nected layers is employed to extract individual point fea-
tures. Following the above kNN association, a channel-wise
max pooling operation is conducted to get the node feature
from the point features associated with the corresponding
SOM node. Then the M node features are forward into a
series of shared layers, and aggregated into a global fea-
ture that represents the input point cloud. Compared with
PointNet++ [25] which handles the point cloud by grouping

Figure 2. Left: The initial nodes of an 8 × 8 self-organizing map
(SOM). Right: Example of a SOM training result. After an un-
supervised competitive learning procedure, the nodes fit well with
the input point cloud.
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Figure 3. The architecture of our proposed SO-HandNet. In the HFE, input points N × C are normalized with the k-nearest SOM node.
After a series of shared FC layers, normalized points are transferred into point features and later max-pooled into node features, these node
features are aggregated into a global representation accordingly. In the HPE, multi-level features extracted by the HFE are combined and
then forward into FC layers to regress the output pose. In this figure, N refers to the point number, C refers to the input channel (C equals
to 3 when only inputs points and equals to 6 while the surface normal of each point is also applied), k refers to the k neighbors in kNN
reach, M refers to the node number, NJ refers to the joint number.

strategy, SO-Net utilizes an efficient separate-and-assemble
approach as the SOM is able to explicate the spatial distri-
bution of points.

3.2. Point Cloud Processing

The hand depth image is first converted into a set of 3D
points according to the intrinsic parameters of the depth
camera. In order to promote computational efficiency, the
3D point set is sampled to N points. In our implementa-
tion, we set the number of sampled points N as 1024, and
transform and normalize the sampled 3D point set into an
oriented bound box coordinate system (OBB C.S) [9]. The
original hand point cloud may have multiple orientations
in camera C.S., but the orientation of point cloud is more
consistent after normalized to OBB C.S. Experiments in [9]
show that the OBB-based point cloud normalization can im-
prove the performance of hierarchical point feature extrac-
tion.

3.3. Hand Pose Regression Network

We design an end-to-end trainable network for 3D hand
pose estimation. The pose regression problem inputs a set
of normalized points X = {xi}Ni=1 = {(pi, ni)}Ni=1

and
outputs estimated pose P̂ = {posei}NJ

i=1 = {(xi, yi, zi)}NJ
i=1

withNJ hand joints of three dimensions, where pi is the 3D
coordinate of the point and ni is the 3D surface normal. A
regression function fr is given by the following equation:

P̂ = fr(X, θr), (1)

where θr is the trainable parameters of regression function
fr. In our method, we apply deep CNNs to optimize the
parameters θr in order to minimize the gap between the es-
timated hand pose P̂ and the ground truth hand pose P .

Hand Feature Encoder (HFE). Our HFE fHFE hierar-
chically extracts multi-level features from the input point
cloud. As shown in Figure 3, we reconstruct the encoder of
SO-Net [16] to process our hand point cloud. With the guid-
ance of SOM, the encoder is able to capture features hierar-
chically and output multi-level features including point fea-
tures, node features and a global feature. The input of HFE
can be only the normalized point coordinates or the combi-
nation of coordinates and surface normal vectors. With the
application of kNN search which is guided by SOM, the in-
put can be converted into kN normalized points, and then
a series of shared fully connected layers are utilized to ex-
tract individual point features. The resulting point features
are fed into a channel-wise max pooling to get the node fea-
tures. Accordingly, the node features are forward to a series
of shared layers and aggregated to a global vector which
represents the whole input point set.

Hand Feature Decoder (HFD). We design a HFD
fHFD to recover the input point cloud from the encoded
global feature vector. As shown in Figure 4, we gener-
ate point cloud from a network with two parallel branches
[8, 16], i.e. a fully connected branch and a deconvolu-
tion branch. It has been proved in [8] that the two-branch
approach has better performance in producing point cloud
than the single-branch method. The fully connected branch
predicts N̂1 points. This branch helps the decoder enjoys
high flexibility since each point is predicted independently.
The deconvolution branch predicts a feature matrix with the
size of 3×W ×H , where N̂1 = W ×H is the number of
points. Thanks to spatial continuity induced by the convo-
lution layers, the recovered points are more geometric con-
sistent. Additionally, weight sharing of this branch helps
it requires less parameters compared to the fully connected
branch. Above introduces the design of HFD, and we pro-
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Figure 4. The architecture of the hand feature decoder (HFD) which takes the input point cloud and recovers a new point cloud. The FC
branch predicts each point independently and shows good performance at describing intricate structures. The “upconv” branch consists of
deconvolution and convolution, and used to exploit spatial continuity. The “conv2pc” module consists of two 1 × 1 convolution layers.
The predictions of two branches are later merged together to form the whole set of points.

pose to use the Chamfer distance (CD) as our decoder loss
(LossD) to evaluate the similarity between the recovered
point cloud Xr ∈ R3 and the input point cloud X ∈ R3:

LossD(Xr, X) =
1

|Xr|
∑
x∈Xr

min
y∈X
‖ x− y ‖2

+
1

|X|
∑
y∈X

min
x∈Xr

‖ x− y ‖2.
(2)

Note that the number of points in X and Xr are not neces-
sarily the same. For each point, CD finds the nearest neigh-
bor in the other point set and sums the distances up.

Hand Pose Estimator (HPE). To recover hand pose
from the features extracted in HFE, we construct a hand
pose estimator fHPE . Since multi-level features are ob-
tained in the pipeline of encoder, they can be applied as the
input of HPE. But whether those features have an impact
on pose estimation needs to be verified. According to the
characteristics of different level features as well as the com-
bination methods, four variants of input features of HPE are
constructed. The input can be the global feature or the other
three variants (as shown in Figure 5), we compare the per-
formance of these different fusion methods in Section 4.1.
The integrated features are forward into a shared fully con-
nected layer to ensure each channel has the same size, and
then using average pooling to fuse the redundant informa-
tion. Besides, a series of fully connected layers are applied
to regress the coordinate of hand joints. When training the
network, we use the Euclidean distance (ED) as the loss
function on predicted poses as defined in the equation be-
low:

LossE(P̂ , P ) =
1

|NJ |

NJ∑
i=1

(‖ ˆposei − posei ‖
2
2), (3)

where ˆposei is the predicted coordinate of the i-th joint and
posei is the corresponding ground truth coordinate.

3.4. Semi-supervised training

Annotating the ground-truth for 3D pose estimation is
both challenging and time-consuming when constructing a
dataset. We introduce a semi-supervised training method
to use less annotated data to train an applicable hand pose
estimation model by making full use of unannotated data
(as shown in Figure 1). When using the unannotated data
to train the network, the HFD recovers a new point cloud
which is compared with the original point cloud and then a
point cloud Chamfer loss LossD is computed. In this case,
the training loss Losst1 is defined as:

Losst1 = LossD. (4)

This training Loss Losst1 is applied to optimize the HFE
and HFD. When using the annotated data to train the net-
work, apart from the Chamfer loss LossD is computed by
HFD, the HPE predicts the 3D hand pose and computes the
pose loss LossE . For the annotated data, the training loss
Losst2 is defined as:

Losst2 = λ× LossE + LossD, (5)

where λ is the weighting factor. The training loss Losst2 is
used to optimize the whole network.

4. Experiments
In this section, to evaluate the proposed method, three

challenging publicly available hand pose datasets are se-
lected for experimenting: ICVL [32], MSRA [30] and NYU
[33]. ICVL Dataset contains 22,059 frames for training and
1,596 frames for testing. The dataset provides the ground
truth of 16 hand joints of each frame. MSRA Dataset con-
tains more than 76K frames from 9 subjects. Each subject
has 17 gestures captured and each gesture has about 500
frames. For each frame, the dataset provides the bound-
ing box of the hand region as well as the coordinates of
21 hand joints. Following pervious works, we utilize the
leave-one-subject-out cross-validation strategy for evalua-
tion. NYU Dataset contains 72,757 training-set frames and
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Figure 5. Strategies of feature fusion. (a) Fusion of global and
node features in M channels. (b) Fusion of global and node fea-
tures in kN channels. (c) Fusion of global, node and point features
in kN channels.

8,252 testing-set frames. For each frame, the RGBD data
from 3 Kinects is provided. In our experiment, we only use
the depth image. The ground truth contains J = 36 anno-
tated joints, we conduct evaluation on the subset of J = 14
hand joints as [7, 9, 11, 35] and also we only use view 1 for
both training and testing.

We evaluate the hand pose estimation performance with
two commonly used metrics. The first metric is the per-
joints mean error in Euclidean space over all test frames
as well as the overall mean error for all joints over all test
frames. The second metric is the fraction of good frames in
which the maximum joint error is bellow a threshold.

For network architecture, we input the sampled and nor-
malized points as well as the surface normal vectors. The
number of sampled points N is set as 1024, and the k of
kNN search is 3. We choose a SOM of size 8 × 8. Our
experiments are conducted within PyTorch framework on a
workstation with Intel Xeon E5-2620, 64GB of RAM and a
NVIDIA TITAN Xp GPU.

4.1. Self-comparisons

Impact of fusion strategies. To better represent the in-
put point cloud, the HFE hierarchically extracts multi-level
features: point features, node features and global feature.
First, we would like to find out whether the node feature
and the point feature actually help the pose regression. We
use the global feature as the input of HPE as the baseline
method, and construct 3 fusion strategies to combine fea-
tures (as shown in Figure 5). (a) Global + Node features
(v1). The global feature vector is repeated M times and then
concatenated with the M node features. (b) Global + Node

Figure 6. Self-comparison on ICVL dataset. The impact of fu-
sion strategies on per-joint mean error and overall mean error are
shown.

Figure 7. Self-comparison on ICVL dataset. The mean error of our
model trained supervised and semi-supervised with the percentage
of annotated data.

features (v2). The global feature vector is repeated kN
times and then concatenated with the kN associated node
features. (c) Global + Node + Point features. Transfer
global feature and node features into kN features as above,
and then combine global, node and point features to an in-
tegration feature. We evaluate these different fusion strate-
gies on ICVL dataset. Notably the size of different com-
bined features have no influence on our estimation process,
since a shared FC and average fooling are conducted to con-
vert the combined features into a fixed size. As presented
in Figure 6, Global + Node features (v1) gets the highest
accuracy. Compared with only using global feature, fusing
with node feature improves the performance. We also com-
pare two fusion strategies to incorporate the global and node
features, and find that v1 outperforms v2. Besides, adding
point features to the prior fusion makes no contribution and
slightly damages the performance.

Impact of semi-supervised learning. We study the im-
pact of semi-supervised learning on ICVL dataset. With the
same network architecture, we use part of the annotated data
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from the training set to train the whole network and mean-
while use the rest of data to train the autoencoder without
using their pose information. As shown in Figure 7, the
performance is significantly promoted compared with the
method that only trained by the same size of annotated data.
When using 25%, 50% and 75% of annotated data to con-
duct model training, semi-supervised training witnessed an
improvement at 13.2%, 11.7% and 0.7% accordingly. When
the ratio of the annotated data is small e.g. 25%, using unla-
beled data can get significant improvement on hand pose es-
timation. The performance of training with 25% annotated
data via semi-supervised scheme is comparable to training
with 50% annotated data in normal scheme. This character-
istic can also be observed when comparing the performance
of the method that using 50% annotated data for training
in the semi-supervised manner with the method that using
75% annotated data for training in general way. Note that
no data augmentation is implemented in our experiments.

4.2. Comparisons with State-of-the-arts

We compare our method with some of the state-of-the-art
methods including LRF [32], Deep Model [40], DeepProir
[21], Crossing Nets [34], Cascade [30], HBE [41], V2V-
PoseNet [19]. As shown in Table 1, we achieved compa-
rable accuracy when utilize all annotated training data un-
der the condition that without any data augmentation. We
get better result than all the other methods except to V2V-
PoseNet. Remarkably, we use less data to train the network
and the computational cost of us is also much lower (as
shown in Table 2). In general, we obtain comparable perfor-
mance with state-of-the-art supervised methods in real-time
hand pose estimation.

Method Mean Error(mm)
LRF 12.6

Deep Prior 11.6
Deep Model 10.4

Crossing Nets 10.2
Cascade 9.9

HBE 8.6
Ours 7.7

V2V-PoseNet 6.3

Table 1. Comparison of the mean error with the state-of-the-arts
on ICVL.

Method Parameter Quantity Testing Speed
V2V-PoseNet 457.5M 3.5fps

Ours 16.6M 58fps

Table 2. Comparison of parameter quantity and testing time on
single GPU.

Figure 8. Comparison with Crossing Nets on ICVL (upper) and
NYU (bottom) datasets. The mean error of semi-supervised
trained model with the percentage of annotated data.

To verify the effectiveness of the semi-supervised train-
ing strategy, we compare our method with the state-of-the-
arts [3, 28, 34] which also aim at solving the challenging
of data annotation. Different from the proposed method
that reduces the amount of annotated data for training and
making full use of unannotated data, the key idea of Baek
et al. [3] is to synthesize data in the skeleton space for
data augmentation. The percentage of annotated frames of
Beak et al. is 100% and they train the model by the aug-
mented set which is around 10 times larger than the original
training set. As can be seen in Table 3, comparing with
[3], our method obtains better performance when using the
same amount of annotated data, moreover, our method is
also superior to them when using only part of annotated
frames. The Crossing Nets [34] is one of the milestone
works that perform accurate hand pose estimation in the
semi-supervised setting. We compare our method to [34]
with the same percentage of annotated training data. As
shown in Figure 8 and Table 3, our method outperforms
them in most of the experiments. What’s more, as the
number of annotated frames increased from 25% to 75%,
their method shows little improvement, whereas our method
gets significant promotion. Figure 9 shows that our method
has better performance than most recently semi-supervised
methods [28, 34] over most of the error thresholds on three
datasets. On NYU dataset [33], when the maximum al-
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Figure 9. Comparison of our approach with recently state-of-the-art semi-supervised methods on NYU (left), MSRA (middle) and ICVL
(right) datasets. The proportion of good frames over different error thresholds are presented in this figure.

Method Annotated Frame Usage Augmented Set ICVL(mm) NYU(mm)
Beak et al.(baseline) 100% No 12.1 17.3

Beak et al.(w/o aug.; refine) 100% No 10.4 16.4
Beak et al.(w/o refine) 100% Yes, 10 times 9.1 14.9

Beak et al. 100% Yes, 10 times 8.5 14.1

Crossing Nets

25% No 10.5 16.1
50% No 10.0 16.0
75% No 10.1 15.9
100% No 10.2 15.5

Ours

25% No 11.1 14.9
50% No 9.4 14.1
75% No 9.1 12.8
100% No 7.7 11.2

Table 3. Comparison of our work with semi-supervised methods on ICVL and NYU. We evaluate the performance by test estimation
error as well as the percentage of annotated data and total data used for model training. Our network produces better accuracy and more
applicable to circumstance when the annotated data is limited.

lowed distance is between 20mm and 30mm, the fraction of
good frames of our method is about 30% better than them.
On MSRA dataset [30], when the maximum allowed dis-
tance is between 20mm and 30mm, the fraction of good
frames of our method is about 15% better than them. On
ICVL dataset [32], when the maximum allowed distance is
15%, the fraction of good frames of our method is about
10% better than [28] and about 20% better than [34]. In
summary, our method provides a practical mode to reduce
the reliance on annotated data in hand pose estimation task
and outperforms recent semi-supervised methods.

4.3. Runtime and Model Size

The testing time of us is 17.2ms in average, specially,
8.2ms for data processing including point sample and sur-
face normal computation, 9.0ms for the hand pose estima-
tion. Our approach runs in real-time at about 58fps. In
addition, the size of HFE, HFD and HPE are 8.1M, 74M
and 8.5M respectively. Since we only employ the HFE and

HPE in the testing stage, the model size of our network is
16.6MB.

5. Conclusions
In this paper, we present a novel network for 3D hand

pose estimation from a single depth image. To better repre-
sent the original data and perform more efficiently feature
extraction, we convert the depth image into point cloud and
extract multi-level features by a self-organizing encoder.
Multi-level features are fused to regress accurate 3D hand
pose. Moreover, we utilize a decoder to optimize the en-
coding process in the training phase. Additionally, to alle-
viate the burden of laborious 3D hand pose annotation on
training data, we propose to train our hand pose estimation
network in a semi-supervised manner with both annotated
data and unannotated data. Experimental results on three
datasets show that our proposed SO-HandNet achieves su-
perior performance in semi-supervised training for 3D hand
pose estimation from detph images.
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