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Abstract. Variational methods are the most widely used approaches
for optical flow computation. Many complicated algorithms have been
proposed to improve their performance, yet little work has focused on
how to select the optimal smoothness parameter λ of the variational optical
flow algorithm itself. We present a weighted root mean square error
method to automatically select the optimal smoothness parameter λ.
Furthermore, we detail a scientific method for selecting the reference λ0
based on the quality of the frame, and propose an efficient brute-force
approach to assign a group of λ, that will reduce the number of λ candi-
dates to be tested by cutting down the search range. Experimental results
validate the effectiveness of our methods. © 2012 Society of Photo-Optical Instru-
mentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.3.037202]
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1 Introduction
Motion estimation is a fundamental problem in computer
vision. Since Horn and Schunck (HS)1 proposed the classical
variational optical flow method, it has become one of the
most successful approaches to obtain accurate motion infor-
mation.2 Motion field is the two-dimensional projection of
the three-dimensional motion of surfaces in the world,
whereas the optical flow is the apparent motion of the bright-
ness patterns in the image.3 Currently, the optical flow
method is widely used for motion estimation (image align-
ment and registration), motion analysis (object detection,
object tracking, object recognition), etc.

Over the past 30 years, researchers have devised various
optical flow methods. However, variational approaches have
become predominant because of the following inherent advan-
tages: 1. Integrating different concepts into one single minimi-
zation framework to combine the merits of different available
approaches; 2. Using convex and robust energy functional
guarantees the objective function has an unique global mini-
mum; 3. The filling-in effect yields a dense flow field, whereas

other optical flow techniques require subsequent postproces-
sing steps to interpolate the sparse flow; 4. Combing with
numerical approaches (multigridmethod4) and advanced com-
puter techniques2 allows for real-time application.

Although variational methods have some superiorities,
their basic structure, where a local, gradient-based matching
of pixel brightness values is combined with a global smooth-
ness assumption, has some shortcomings. Newer approaches
have steadily overcome these limitations. Themodified isotro-
pic and anisotropic smoothness term,5,6 nonquadratic data
term,7 and the total variation (TV) L1-normmodel8 have been
proposed to allow for piecewise smoothness, while preserving
discontinuities. Outliers are penalized less severely by robust
statistic functions,5,7 and filtering approaches have been pre-
sented to further dispose noise.8 Illumination change problems
can be handled by integrating the assumption of constancy of
the gradient or higher order derivatives,6 by photometric invar-
iant constraints, by using cross-correlation techniques,9 or by
structure-texture decompositionmethod2 coarse-to-fine strate-
gies,10 nonlinearized models,6 and descriptor matching11 have
been introduced to tackle large displacements. Real-time
performance can be achieved by using multigrid strategy0091-3286/2012/$25.00 © 2012 SPIE
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and parallel computation in central processing units (CPU),4

and modern graphic processing units (GPUs).2

Most related work has focused on finding complex ways
to improve the quality of the optical flow field, which in
many cases only work under special conditions. In this
paper, we address the problem of how to select the optimal
smoothness parameter λ of the variational optical flow algo-
rithm itself. Choosing an appropriate λ is critically important
for obtaining desirable results. In Ref. 12, a smoothness
weight selection problem based on the weighted distance
using the blurring operator is studied, but it cannot be applied
directly to variational algorithms because of its spatially
varying character. A brute-force method is proposed in
Ref. 13. However, it is computationally expensive, especially
with respect to robust data terms. An approach jointly esti-
mating the flow and the model parameters in a Bayesian
framework is presented in Ref. 14, but this method for
minimizing the objective function is too complex. Recently,
Zimmer proposed an optimal prediction principle (OPP)
method,6 but it is limited to conditions with constant speed
and linear trajectories of objects.

In this paper, we introduce the Euclidean distance L2
norm-root mean square (RMS) error, which is used as a judg-
ment to evaluate the performance of different kinds of Lucas-
Kanade algorithms15 in order to determine the optimal λ.
Because this approach would be challenged under some
less than optimal conditions, we further modify the RMS cri-
terion by introducing a weighting factor. Our Weighted RMS
method based on the principle that the worse the flow field is,
the larger the weighted RMS (WRMS) becomes, and the
better the flow field is, the smaller the WRMS will be.

Section 2 describes a classical TV-L1 optical flow algo-
rithm. Section 3 gives the detailed instruction of the WRMS
approach to select the optimal smoothness parameter λ.
Experimental results and corresponding analysis are pro-
vided in Sec. 4. The paper is concluded in Sec. 5.

2 TV-L1 Optical Flow Method

2.1 L2-Norm: Original Horn-Schunck Algorithm

The HS model, proposed by Horn and Schunck,1 is based on
the brightness constancy assumption which assumes the
brightness of a pixel remains the same for a small motion
in a short period of time:

I1ðx; y; tÞ ¼ I2ðxþ u; yþ v; t þ dtÞ; (1)

where ðu; vÞ ¼ ðdxdt ; dydtÞ are the horizontal and vertical dis-
placement fields. Obviously, the single Eq. (1) with two
unknowns ðu; vÞ results in an under-determined equation.
Besides this problem, a small perturbation in the image
may create large fluctuations on its derivatives. To overcome
these two problems, researchers have introduced additional
constraints. Based on the type of constraints, there are two
primary groups: one applies global constraints,1,4 another uti-
lizes local constraints.10,15 The global smoothness constraint
originally used in the HS model is defined as:

j∇uj2 þ j∇vj2 ¼
�
∂u
∂x

�
2

þ
�
∂u
∂y

�
2

þ
�
∂v
∂x

�
2

þ
�
∂v
∂y

�
2

: (2)

This smoothness constraint supposes that the neighbors of
one pixel have almost the same velocity, so the flow field

varies smoothly. Then the basic L2-Norm variational
algorithm is established by:

Eðu; vÞ ¼
Z
Ω

�
I2ðxþ u; yþ v; t þ dtÞ − I1ðx; y; tÞ

�
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

data term
dΩ

þ λ

Z
Ω

ðj∇uj2 þ j∇vj2Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
smoothness term

dΩ: (3)

2.2 L1-Norm: Classic+NL Algorithm

As stated in Refs. 8 and 9, in contrast to L2-norm model, the
L1-norm model is better for preserving discontinuities, and
also handles noise and outliers more robustly. After Rudin16

introduced the TV approach into computer vision field, the
L1-norm model became the main trend in optical flow algo-
rithms. In this work, we further improve the performance of
the variational optical method by combining the representa-
tive state-of-the-art TV-L1 “Classic+NL” algorithm8 with
our WRMS approach. The original “Classic+NL” algorithm
is defined as follow:

Eðu;vÞ¼
X
i;j

fρD
�
I1ði; jÞ− I2ðiþu; jþ vÞ�

þ λ
�
ρSðjuxjÞþρSðjuyjÞþρSðjvxjÞþρSðjvyjÞc

�o
þ λ 0ðku− ûk2þkv− v̂k2Þ
þ
X
i;j

X
i 0;j 0∈Ni;j

wi;j;i 0;j 0 ðjûi;j− ûi 0;j 0 jþ jv̂i;j− v̂i 0j 0 jÞ; (4)

where λ, λ 0 are the weighting parameters, which control the
relative importance of each term. In Sec. 3, we will propose a
WRMS approach to automatically determine the optimal
smoothness weighting parameter λ. ρðxÞ ¼ ðx2 þ ε2Þα is the
slightly nonconvex penalty function, α ¼ 0.45, ε ¼ 0.001.
û and v̂ are the auxiliary flow fields of u and v, and approx-
imate to u, v. Ni;j is the set of neighbors of pixel ði; jÞ in a
possibly large area. wi;j;i 0;j 0 is the weighting parameter of the
last nonlocal term, it denotes the similarity between pixel
ði; jÞ and its neighbor pixels. In this work, wi;j;i 0;j 0 is modified
by integrating the information about image structure and
flow boundaries in order to prevent over-smoothing across
boundaries. It can be calculated through their color-valve
distance, spatial distance, and occlusion state:

wi;j;i 0;j 0 ∝ exp

�
−
ji − i 0j2 þ jj − j 0j2

2σ21
−
jIði; jÞ − Iði 0; j 0Þj2

2σ21

�

×
oði 0; j 0Þ
0ði; jÞ ; ð5Þ

where Iði; jÞ is the color vector in the lab space, σ1 ¼ σ2 ¼ 7,
0ði; jÞ is he occlusion variable which can be calculated using
Eq. (22) from Ref. 17.

2.3 Efficient Approaches to be Adopted in Solving
the Algorithm

Illumination changes create common and difficult issues in
motion estimation. Zimmer, Bruhn and Weickert6 employ
the constancy of the gradient (or higher order derivatives)

Tu et al.: Weighted root mean square approach to select the optimal smoothness parameter : : :

Optical Engineering 037202-2 March 2012/Vol. 51(3)



method to dispose of this problem. However, the selection of
the suitable weighting factor between the brightness term and
the gradient term is not a trivial problem. To solve it, we apply
the structure-texture decomposition method2 to preprocess the
input images to overcome illumination changes. A coarse-to-
fine scheme10 is adopted to handle large displacement. The
graduated nonconvexity (GNC) method is employed for con-
verting the objective functional into a convex approximation.
The preeminent numerical method,2 which is based on a dual
formulation of the TV energy, is utilized to solve the optical
flow algorithm. Firstly, we decompose the energy functional
Eq. (4) into Eqs. (6) and (7), then update either u, v or û, v̂ to
get the final optical flow field ðu; vÞ by alternatively comput-
ing the two equations:

Eðu; vÞ ¼
X
i;j

fρD
�
I1ði; jÞ − I2ðiþ u; jþ vÞ�

þ λρSðj∇uj þ j∇vjÞg þ λ 0ðku − ûk2 þ kv − v̂k2Þ;
(6)

Eðu; vÞ ¼ λ 0ðku − ûk2 þ kv − v̂k2Þ
þ
X
i;j

X
i 0j 0∈Ni;j

wi;j;i 0j 0 ðjûi;j − ûi 0j 0 j þ jv̂i;j − v̂i 0j 0 jÞ:

(7)

The approach described in Ref. 2 is adopted to solve
Eq. (7), and the traditional SOR method combined with
the nonlinear full approximation scheme (FAS)4,11 are
used to solve Eq. (6) (SOR method is a good compromise
between simplicity and efficiency). We perform three
times of alternating to solve Eqs. (6) and (7) after every
warping in the computing procedure.

3 WRMSMethod to Select the Optimal Smoothness
Parameter

Researchers introduced the smoothness assumption con-
straint1,4 to overcome the ill-posed problem in variational
algorithms. The smoothness weight λ plays an important
role in controlling the trade-off between the data term and
the smoothness term. If λ is too small, it will result in over-
fitting between the two frames. If λ is too large, the flow field
would be too smooth.

3.1 RMS Approach

Finding an available approach to determine the optimal
smoothness parameter λ would directly improve the quality
of the flow field. However, most of the present algorithms8,11

simply set the smoothness parameter λ to a constant. Some
strategies have been adopted to handle this problem, how-
ever, each of them has some drawbacks (e.g., being compu-
tational expensive13,14, being limited to special condition.6

By summarizing the relevant research of others, we propose
a RMS approach to determine the optimal smoothness
parameter λ automatically.

Simon15 employed the basic Euclidean distance error-
RMS error as a measurement to judge the quality of the
flow field of all kinds of Lucas-Kanade (LK) algorithms:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
x¼1

P
N
y¼1

�
I1 − I2ðxþ u; yþ vÞ�2

MN
;

s
(8)

where M, N are the number of columns and rows of the
frame respectively. ðu; vÞ are the estimated optical flow
field. This measurement has been demonstrated to evaluate
the performance of LK algorithms effectively by comparing
the value of RMS without knowing the ground truth.

Obviously, HS variational algorithms share the same char-
acteristic with LK algorithms—the better the smoothness
parameter λ is, the more accurate the result for the optical
flow field ðu; vÞ, the better match that can be achieved
between the two frames, the smaller of the RMS will be.
Consequently, the optimal λ corresponds to the minimal
RMS. Based on this theory, we introduce the RMS measure-
ment to determine the optimal λ by:

RMSðuλi ; vλiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
x¼1

P
N
y¼1

�
I1 − I2ðxþ uλi ; yþ vλiÞ

�
2

MN

s
;

(9)

where ðuλi ; vλiÞ is the estimated flow field with different λi
(i ¼ 1; 2; : : : ) of the variational algorithm:

Eðuλi ;vλiÞ¼
X
i;j

n
ρD

�
I1ði;jÞ−I2ðiþuλi ;jþvλiÞ

�
þλi

�
ρSðjuλixjÞþρSðjuλiyjÞþρSðjvλixjÞþρSðjvλiyjÞ

�o
þλ 0ðkuλi − ûλik2þkvλi − v̂λik2Þ
þ
X
i;j

X
i 0;j 0∈Ni;j

wi;j;i 0;j 0 ðjûλi i;j− ûλi i 0;j 0 jþjv̂λi i;j

− v̂λi i 0;j 0 jÞ.
(10)

3.2 Determining the Optimal λ

According to Sec. 3.1, we first get the optical flow ðuλi ; vλiÞ by
solving Eq. (10). Thenwe compare theRMSðuλi ; vλiÞ [Eq. (9)]
of different λi to determine the optimal λ:

λoptimal → minðRMSðuλi ; vλiÞji¼1;2; : : : Þ. (11)

Hence, the basic and most important step of the whole
method is to set a group of λi.

In general, the relevance between λi and RMSðuλi ; vλiÞ
isn’t convex, which excludes using mathematical optimiza-
tion algorithms for finding the optimal value. We propose a
novel brute-force method similar to that described in Ref. 13,
but much more efficient, especially when integrated with
modern GPUs. In order to reduce the number of λi to be
tested, we first choose a reference λ0, and then set a
group of λi (i ¼ 1; 2; : : : ) around it in a specified range.

3.2.1 The principle used to select reference λ0

According to our prior experiments on various sequences and
the conclusions of other researchers,4,8 we define the follow-
ing principle to use in choosing the reference λ0: first, the
possible candidate values of λ0 is [3; 5; 8; 12; 15; 20;
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25]; and second, λ0 and its group sets are determined by the
quality and resolution of the sequences. For high quality
sequences, or the sequences with small details in the flow
field, a small λ0 is chosen. For low quality sequences
with a rather smooth flow field, larger λ0 should be selected.
Figure 1 shows the principle to select the reference λ0.

3.2.2 The scheme to set the group λi

Zimmer6 has described a process wherein he incremented
and decremented λ0 by multiplying or dividing it with a step-
ping factor α several times. In contrast to this approach, we
give a more suitable method to set the group of λ proportion-
ally. For example, when selecting λ0 ¼ 3, the group of λ is set
to λ ¼ ½1∶0.25∶6�, where the first and last value indicate the
start and end point, respectively, and 0.25 indicates the step
size between them. When selecting λ0 ¼ 5, the group of λ is
set to λ ¼ ½2∶0.25∶8�. When selecting λ0 ¼ 8, the group of λ
is set to λ ¼ ½5∶0.25∶10∶1∕3∶12�which indicates a step size
of 0.25 between the starting point and 10, and a step size of
1/3 between 10 and the end point. When selecting λ0 ¼ 12,
the group of λ is set to λ ¼ ½8∶0.25∶10∶1∕3∶16�. When
selecting λ0 ¼ 15, the group of λ is set to λ ¼
½10∶1∕3∶20�. When selecting λ0 ¼ 20, the group of λ is
set to λ ¼ ½15∶1∕3∶20∶0.5∶25�. When selecting λ0 ¼ 25,
the group of λ is set to λ ¼ ½20∶0.5∶30� and so forth. In con-
trast with Zimmer’s approach, which prefers going from a
smaller λ to a larger λ, this equal proportion set avoids testing
smaller λi (left side of λ0, λi < λ0) as well as less large λi
(right side of λ0, λi > λ0). As the range of λ is determined
in a reasonable small scope, treating them equally avoids
leaving out any requisite candidate.

3.3 Improved WRMS Approach

AlthoughtheRMScriterion iseffective, it faces someproblems:
first, in practice, the sequences that require processing are often
of low resolution and low quality (dim, noisy, etc.). Second,
high quality sequences can contain serious occlusions,
shadows, etc. In these cases, the accuracy of the flow field
will deteriorate. Particularly, some wrong components
ðui;j; vi;jÞ of the flow field can severely perturb the accuracy
of the RMS method. Hence, we present a modified approach
to improve its performance by introducing weighting to
RMS. Intuitively, the reason for our choice is that if the
flow field component ðui;j; vi;jÞ is wrong, the corresponding
brightness in the error image Iði;jÞError ¼ I2½xþ ui;jðwrongÞ;
yþ vi;jðwrongÞ� − I1ðx; yÞ will seriously deviate from the
actual one Iði;jÞright ¼ I2½xþ ui;jðrightÞ; yþ vi;jðrightÞ� − I1ðx; yÞ.

Naturally, this results in its gradient j∇IErrorði;jÞjwrongj becoming
much larger than the true gradient j∇Iði;jÞrightj. We propose a
weighted RMS (WRMS) criterion j∇IErrorði;jÞjRMS to handle
this problem, which gives a heavier weight to the wrong com-
ponent, and a lower weight to the right one. This improvement
makesourWRMSmethod to represent the errormoreprecisely,
especially under bad conditions.

Usually, people tend to directly use the gradient j∇Ij as a
weight,18 and simply compute the forward difference, back-
ward difference, or central difference. These differences are
roughly calculated by subtracting the neighborhood pixels.
When we use this ordinary method of calculating the gradi-
ent of the warped image Iwarp ¼ I2ðxþ ui;j; yþ vi;jÞ, it results
in some originally correctly warped pixels to show the wrong
results. This occurs because, in the warped image, some cor-
rect pixels are surrounded with wrong pixels, especially in
situations such as at the edges, noisy areas, discontinuity
positions, occlusions, etc. For instance, Iwarpxði;jÞjwrong ¼
Iwarpði;jÞjright − Iwarpði−1;jÞjwrong. Reducing the number of
these numerical approximation errors would further improve
the result.

Through our research, we discovered that no correct pixel
is isolated in thewarped image Iwarp ¼ I2ðxþ ui;j; yþ vi;jÞ. In
other words, it is highly unlikely that a pixel is correct yet its
neighbors are all wrong. At least some of its neighbors will
be correct (for example, its upside neighbor is right, or
both upside neighbor and forward neighbor are right, and
so on). Basically, the brightness between the correctly warped
pixel and its correctly warped neighbors is approximated,
while a large difference exists between the correctly
warped pixel and its relevant wrongly warped neighbors.
Based on this characteristic, selecting the smaller of
½Ixði;jÞ ¼ minðIxði;jÞjforward; Ixði;jÞjbackwordÞ� between the pixel’s
forward difference and backward difference can greatly
reduce the wrong gradients j∇Ii;jj (The same approach
can be used to compute Iyði;jÞ). Hence, the weight can be cor-
rected by this way. This improvement can be verified in
Table 1.

3.4 Principles to Reasonable Utilize WRMS, OPP

Using our WRMS method in complementwith the state-of-
the-art OPP method enables us to better deal with different
practical conditions. With objects moving in a constant speed
along a linear trajectory, the OPP approach should be
considered first. Utilization of he WRMS method should
be encouraged for sequences not possessing good quality
as in the first case. Its use is strongly indicated especially
where sequences have a significant amount of noise, serious
occlusions, shadows, etc.

4 Experimental Results
We verified the correctness of our proposed WRMS
approach by experiments using the Human-Assisted Motion
Annotation database19 and the standard Middlebury bench-
mark database.3 In contrast with other papers4,6,8,11 which
only test the artificial sequences, our experiments also
include the real scene sequences.

In the first experiment, we check whether or not our
improved gradient weight is effective. We compare both
the average angular error (AAE) and average end-point
error (EPE) of the following three methods with each
other: our improved weighted RMS method (WRMS), the

Fig. 1 The principle to select the reference value λ0.
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general RMS method (without weight) (RMS), and the sim-
ple central difference weighted RMS method (WRMS_C).
From Table 1, we can see that the weighted RMS method
performs better than the pure RMS method, and our
WRMS method further improves the accuracy of the simple
WRMS_C method for most of the sequences.

In the second experiment, we check whether our WRMS
method does automatically determine the optimal smooth-
ness parameter λ. We compare the state-of-the-art “Classic
+NL” algorithm, which uses the fixed smoothness parameter
λ based on experience, with our WRMS method. Table 2
shows that our approach outperforms the “Classic+NL”
algorithm in most of the examples. For some sequences,
like Toy, Car, Fish, we find a surprised improvement. For
these sequences, the suitable λ value was unknown, so
the “Classic+NL” algorithm, which simply selects the λ
without reference to experience and without setting it to
a fixed value, is separated from practice. Instead, our
WRMS method would automatically determine the optimal
λ without ground truth and experience.

In the third experiment, we compare the performance of
our WRMS method to automatically determine the optimal
smoothness parameter λ with the state-of-the-art ADCE
approach. The results presented in Table 3 show that our
method is superior to the ADCE approach for most of the
sequences, except for the high quality ones in which the
primary motion of the objects are constant speed on a linear
trajectory (like Hydrangea). For sequences (like Car, Fish)
with a complex background and low resolution, our
WRMS method still outperforms the ADCE approach,
even if the objects move with a constant speed along a linear
trajectory.

In these above three experiments, we selected the
reference λ0 according to our methodology outlined in
Sec. 3.1. For the highest quality and resolution sequences,
such as RubberWhale, Grove2, Grove3, Hand, Urban3,
we set λ0 ¼ 3; For Urban2 and Hydrangea whose quality
is a little lower than Urban3, we set a little higher value
of λ0 ¼ 5. Based on this principle, we used the following
values for other sequences: Toy, λ0 ¼ 12; Car, λ0 ¼ 20;
Fish, λ0 ¼ 25.

In our last experiment, we investigate three complex real
scene sequences from the Middlebury benchmark database
which include occlusion, large displacement, small-scale
structures, illumination changes, shadows, etc. (we use
frame 9, frame 10, and frame 11 in the three sequences to
be tested). We compare “Classic+NL” and ADCE methods
with our approach to test the practicality and effectiveness of
WRMS. In this test, we set λ0 ¼ 12 for the three sequences
based on their quality.

Figure 2 shows that, when comparing the color optical
flow field Figs. 2(a), 2(c), and 2(e) of the three methods,
our WRMS method represents the complex movements of
the legs almost completely correct, where the big girl’s
legs are nearly totally occluded by the little girl. In Fig. 3,
which compares the movement of the small balls in
Figs. 3(a), 3(c), and 3(e), we can see that our approach per-
forms much better than the other two methods. The warped
frames Figs. 3(b), 3(d), and 3(f) reflect that the “Classic+NL”
method and the ADCE method both fail to estimate the
motion of the balls because it is hard to handle large displa-
cements with small scale structures, as pointed out in
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Fig. 2 The optical flow fields and the warped frames for the three methods applied to backyard sequences: (a) Backyard_Classic+NL_Colorflow,
(b) Backyard_Classic+NL_Warp, (c) Backyard_ADCE_Colorflow, (d) Backyard_ADCE_Warp, (e) Backyard_WRMS_Colorflow, and (f) Back-
yard_WRMS_Warp.

Fig. 3 The optical flow fields and the warped frames for the three methods applied to Beanbags sequences: (a) Beanbags_Classic+NL_Colorflow,
(b) Beanbags_Classic+NL_Warp, (c) Beanbags_ADCE_Colorflow, (d) Beanbags_ADCE_Warp, (e) Beanbags_WRMS_Colorflow, and (f) Bean-
bags_WRMS_Warp.
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Ref. 11. Our method solves this challenging problem. When
comparing the primary motion of the man in Fig. 4, espe-
cially his left hand, and particularly the fingers and his
shadow in Figs. 4(a), 4(c), and 4(e), we see that our flow
field is much more accurate than the other two. Despite the
complex sequences, which include illumination changes
and shadows, our warped image (f) is nearly the same as
the original frame.

The results of the five experiments indicate that our
WRMS method can automatically determine the optimal
smoothness parameter λ and improves the accuracy of the
estimated flow field successful.

5 Conclusions
In this paper, we proposed an efficient WRMS method to
automatically determine the optimal smoothness parameter
λ, suitable for other kinds of variational optical flow algo-
rithms. In our new approach, the reference λ0 is set based
on the quality of the frame and an effective way to assign
a group of λ to be tested. The alternative gradient approach
reduces numerical errors, further improves the weight of
RMS, and also provides a new numerical way to calculate
the derivative. Finally, we suggested how to employ the
WRMS approach and the OPP method complementarily.
Experimental results demonstrated the effectiveness of the
presented approaches.
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