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Abstract. Median filtering the intermediate flow fields during optimiza-
tion has been demonstrated to be very useful for improving the estimation
accuracy. By formulating the median filtering heuristic as non-local term
in the objective function, and modifying the new term to include flow
and image information that according to spatial distance, color similar-
ity as well as the occlusion state, a weighted non-local term (a practical
weighted median filter) reduces errors that are produced by median fil-
tering and better preserves motion details. However, the color similarity
measure, which is the most powerful cue, can be easily perturbed by noisy
pixels. To increase robustness of the weighted median filter to noise, we
introduce the idea of non-local patch denoising method to compute the
color similarity in terms of patch difference. Most importantly, we pro-
pose an improved color patch similarity measure (ICPSM) to modify the
traditional patch manner based measure from three aspects. Comparative
experimental results on different optical flow benchmarks show that our
method can denoise the flow field more effectively and outperforms the
state-of-the art methods, especially for heavy noise sequences.

1 Introduction

Estimation of a dense motion field between video frames plays a fundamental role
in computer vision and image processing. One of the most successful techniques
that address this problem is the variational optical flow method [2,3,9], and it
has been widely used for various visual tasks, such as tracking, object segmenta-
tion and recognition, and super-resolution reconstruction. Since the seminal work
of Horn-Schunck (HS) [1], various subsequent extensions and improvements have
been proposed over the past 30 years to tackle drawbacks of the HS model, and
there has been tremendous progresses, such as: pre-processing the input images
with photometric invariant constraints or structure-texture decomposition tech-
nique to handle illumination changes [11], or with pre-filtering approaches
(e.g. Gaussian filter [1] and Laplacian filter [3]) to reduce outliers (e.g., image
noise and estimated flow errors). Penalty functions [2,4,5] are utilized to pre-
serve motion discontinuities and increase robustness to outliers and occlusions.
Additionally, occlusions can also be handled according to bilateral filters [6,7].
Large displacements can be estimated by employing traditional coarse-to-fine
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strategy [8] or matching techniques (e.g. sparse feature matching [9] and dense
correspondence matching [10]). However, there are still outstanding problems
in existing optical flow methods, such as outliers and large displacements. This
paper addresses the issue of outliers removing in terms of median filtering.

In a current survey paper, in comparing various modern optimization and
implementation techniques, Sun et al. [5] point out that applying a median filter
[11,12] to intermediate flow values during incremental estimation and warping
produces the most significant improvements. Median filtering is beneficial for
every optical flow algorithm they tested, since it can effectively denoises the
intermediate flow fields and reduces gross outliers. All in all, it can make even
non-robust methods much more robust.

However, median filtering in a large neighborhood has negative effects on edges
and corners. A neighborhood centered on a corner or thin structure is dominated
by its surroundings, leading to oversmoothing. To improve the performance of the
classic median filtering [5,11,12] formulated the median filtering heuristic as a
non-local term in the objective function, and incorporated flow and image infor-
mation to construct a weighted version (a practical weighted median filter). The
weighted non-local term is very useful to avoid smoothing at edges and motion
boundaries, and can well preserve motion details. Because pixels that belong to
the same surface are given higher weight and it ensures pixels only propagate infor-
mation within their same region.

Although the weighted median filter (WMF) has great advantages, it still
has one serious problem. As the weight of WMF heavily depends on the color
similarity between pixels, it can be easily violated by noisy pixels [13]. Conse-
quently, improving the robustness of the color similarity measure to noise is a
good way to improve the performance of the WMF.

Since Buades et al. [14] proposed a non-local means (NLM) method, which
uses patches instead of pixels to compare photometric similarities, the non-local
denoising methods [15,16] have attracted a lot of attention recently and outper-
forms conventional filters, leading to the patch-based non-local manner becoming
the central part of many state-of-the-art algorithms [17,18]. The NLM denoises
a pixel as the weighted sum of its noisy neighbors, where each weight reflects the
similarity between the local patch centered at the noisy pixel (i, j ) to be denoised
and the patch centered at the neighbor pixel (i′, j′) [15]. In this way, the NLM
not only compares the intensity in a single point but also the geometrical config-
uration in a whole neighborhood. This characteristic allows a more robust com-
parison than traditional neighborhood filters, and pixels with a similar intensity
neighborhood to the noisy pixel will assign higher weights on average.

In this paper, we adopt the idea of the non-local patch method [17], and pro-
pose an improved color patch similarity measure (ICPSM) to compute the color
measure from three aspects: (1) we introduce a patch manner to compute the color
similarity and apply a non-linear median filter function to replace the general lin-
ear Gaussian function to reduce blurring; (2) we construct a replicated patch that
centered at the noisy pixel (i, j ) to substitute the normal patch to reject noise
more effectively; (3) we calculate the smoothing parameter of the proposed ICPSM
adaptively based on the noise degree of the input image to steer smoothing.
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Our paper is organized as follows: Sect. 2 introduces the WMF based optical
flow method. Section 3 describes our proposed improved color patch similarity
measure. We describe the implementation detailed in Sect. 4. Experimental com-
parisons are shown in Sect. 5. A brief conclusion is given in Sect. 6.

2 Weighted Median Filter Based Optical Flow Method

Median filtering [11,12] the intermediate flow fields during incremental estima-
tion and warping is effective to remove outliers. However, it also over-smoothes
corners, edges or thin structures. To prevent this kind of over-smoothing, Sun
et al. [5] construct a weighted non-local term (a practical WMF). We use the
WMF based variational optical flow algorithm [5] as a baseline method, and its
objective function is expressed as:

E(u,v, û, v̂) =
∑

i,j

ρ
D

(I2(i + ui,j , j + vi,j)−I1(i, j))+λ(ρ
S
(‖∇u‖) + ρ

S
(‖∇v‖))

+λ′(‖u−û‖2+‖v−v̂ ‖2)
+

∑

i,j

∑

(i′,j′)∈Ni,j

wi,j,i′,j′(|ûi,j −ûi′,j′ | + |v̂i,j −v̂i′,j′ |) (1)

where u and v are the horizontal and vertical components of the optical flow
field that represents the displacements between the input image pair I1 and I2
and, λ and λ′ are the weighting parameters controlling the relative importance
of each term. ρ

S
(x) = ρ

D
(x) = (x2 + ξ2)α is the slightly non-convex penalty

function, with α = 0.45, ξ = 0.001. û and v̂ are the auxiliary flow fields of u
and v, and approximate to them. (i′, j′) is the spatial position of any pixel that
belongs to a neighborhood Ni,j of pixel (i, j ).

wi,j,i′,j′ is the weighting function of the last weighted non-local term, it
denotes the similarity between pixel (i, j ) and its neighborhood pixels. wi,j,i′,j′

gives high values to pixels belonging to the same surface, while it gives low
values to pixels corresponding to corners, edges and thin structures. It is calcu-
lated according to spatial distance and color similarity between pixels, and the
occlusion state:

wi,j,i′,j′ ∝ exp{−(Spa(i, j, i′, j′) + Col(i, j, i′, j′))}O(i′, j′)
O(i, j)

(2)

in particular, the spatial distance measure is defined as:

Spa(i, j, i′, j′) =
|i − i′|2 + |j − j′|2

2σ2
S

(3)

the color similarity is defined as:

Col(i, j, i′, j′) =
|I(i, j) − I(i′, j′)|2

2σ2
C

(4)
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where I(i, j) and I(i′, j′) are the color vectors in the CIELab space of the central
pixel (i, j ) and its neighborhood pixel (i′, j′) respectively, σ

S
= 7 and σ

C
= 7.

The occlusion state O(i, j) is computed by considering both the flow diver-
gence and pixel projection difference:

O(i, j) = exp{−d2(i, j)
2σ2d

− e2(i, j)
2σ2e

} (5)

where σd = 0.3 and σe = 20. In particular, d(i, j) is the one-sided flow divergence
function, defined as:

d(i, j) =
{

div(i, j), div(i, j) < 0
0, otherwise (6)

in which the flow divergence div(i, j) is computed as:

div(i, j) =
∂

∂x
u(i, j) +

∂

∂y
v(i, j) (7)

where ∂
∂x and ∂

∂y are respectively the horizontal and vertical flow derivatives.
The pixel projection difference e(i, j) is defined as:

e(i, j) = I(i, j) − I(i + ui,j , j + vi,j) (8)

Among the three cues, color similarity plays a most significant role [5]. How-
ever, as Rashwan et al. [13] stated: the reliance on color similarity of the non-local
term causes it is affected by noisy pixels, resulting in inaccurate flow vectors and
blurred motion boundaries. In the next section, we will describe a patch based
color similarity measure to handle the problem of WMF.

3 Improved Color Similarity Measure

We now explain how to improve the color similarity measure by integrating the
non-local patch strategy. In particular, we will first introduce a general patch
manner [14] based color similarity measure. Afterwards, we describe an improved
replicated patch which has better performance to reject noise. Thirdly, we pro-
pose an adaptive scheme to select the smoothing parameter to control denoising.

3.1 Color Patch Similarity Measure (CPSM)

After Buades et al. [14] proposed an NLM algorithm, the non-local denoising
methods have drawn significant attention. The primary advantage of the NLM
denoising method is that they utilize patches instead of pixels to calculate inten-
sity similarity, which makes the NLM methods more robust to pixel-based filters.
According to this fact, as shown in Fig. 1, we employ the between-patch manner
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to replace the between-pixel way to compute the color similarity to reduce the
influence of the noisy pixels:

PCol(i, j, i′, j′) =
‖ PI(i, j) − PI(i′, j′) ‖2

2σ2PC

(9)

where PI(i, j) and PI(i′, j′) denote the local image patches of size k × k (we set
k = 3 in this paper) centered at pixel (i, j ) and (i′, j′) respectively. ‖PI‖ is the
Euclidean norm of patch PI as a point in Rk2

.

3.2 Improved Color Patch Similarity Measure (ICPSM)

With the above modification, the patch difference is used to substitute the pixel
difference. For example, for a noisy pixel (i, j ), the modification of PCol(i, j, i′, j′)
is expressed as (a 3 × 3 patch):

∑

p∈P,q∈P ‖ I(i + p, j + q) − I(i′ + p, j′ + q) ‖2
2σ2PC

→ |I(i, j) − I(i′, j′)|2
2σ2C

(10)

where P = [−1, 0, 1]. However, the traditional patch measure stills has some
defects, in this paper, we improve the CPSM from following three aspects.

PColWMF.Greenberg and Kogan [19] stated that applying a non-linear median
filter function rather than a linear Gaussian function can produce less blurring
during denoising and make the filter more robust to noise. Based on the idea of
[19], we can improve the CPSM PCol(i, j, i′, j′) as following:

PCol(i, j, i′, j′) = median(ID1, ID2, . . . , ID5, . . . , ID9) (11)

the color difference IDn(n = 1, 2, . . . , 9) is computed as:

IDn =
|I(i + p, j + q) − I(i′ + p, j′ + q)|2

2σ2PC

(12)

where p ∈ P, q ∈ P . In particular, ID1 = |I(i−1,j−1)−I(i′−1,j′−1)|2
2σ2

PC
, . . ., ID5 =

|I(i,j)−I(i′,j′)|2
2σ2

PC
, . . ., ID9 = |I(i+1,j+1)−I(i′+1,j′+1)|2

2σ2
PC

.

RPColWMF. The traditional patch based color measure Eq. (9) focuses on
comparing the similarity between the patch PI(i, j) and its neighboring patches
PI(i′, j′), and the patches that belong to the same surface will be given higher
weight during filtering. However, in each PI(i, j), the central pixel (i, j ) is the
most significant, and its neighborhood pixels are not so important. For example,
as shown in Fig. 1(b), if one (or more) neighboring pixel of (i, j ) in PI(i, j) is an
outlier (like the red point), the correctness of the similarity between PI(i, j) and
PI(i′, j′) is badly violated. Colors in natural images are locally consistent, one
pixel has a very large chance of being similar to some of its neighbors [22]. That
is to say, one non-noise pixel should be similar to some of its neighboring patches.
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According to this characteristic, to overcome the above mentioned problem, we
replicate the central pixel (i, j ) to construct a new patch RPI(i, j) (see Fig. 1(c))
and compute the color similarity between the replicated patch RPI(i, j) and its
neighboring patches PI(i′, j′), which can be expressed as RPCol(i, j, i′, j′):

RPCol(i, j, i′, j′) = median(RID1,RID2, . . . ,RID5, . . . ,RID9) (13)

where RIDn = |I(i,j)−I(i′+p,j′+q)|2
2σ2

PC
, (p ∈ P, q ∈ P ).

This improvement ensures that if the color of a pixel (i, j ) is approximate
to the color of its neighboring patch PI(i′, j′), a large value will be assigned
to RPCol(i, j, i′, j′), if not, the value of RPCol(i, j, i′, j′) is small. Clearly, this
strategy is very effective to remove noisy pixels as nearly no noise can have a
similar color to an image patch.

Smoothing Parameter Selection. Different from [5] which just set the color
smoothing parameter σ

C
= 7 fixed for all sequences, we calculate the σ

PC
accord-

ing to:
σ
PC

= 9(1 + log10(σ)) (14)

where σ is the standard deviation of the noise of the input color image I, and
under a constraint σ = max(σ, 1/10). The noise is computed like this: during the
coarse-to-fine optimization framework, we use the Gaussian filter to pre-filter I
before downsampling it at each scale, to construct a pyramid of images [1].
Hence, at each pyramid level, we consider noise as the difference of the denoised
and the noisy color image I.

This scheme is helpful to modify the denoising performance due to two advan-
tages: (1) in contrast to the fixed manner [5], it adjusts the smoothing parameter
σ
PC

accord with the noise degree of the input image I. Since the noise degree
between different images is completely different, a fixed smoothing parameter
is not suitable for all kinds of images; (2) comparing to the non-local filters
[15,16] which select the smoothing parameter based on σ

PC
= 10σ, our scheme

computes the smoothing parameter more precise. For heavy noisy image the
smoothing parameter will be enlarged, while for low noisy image the smoothing
parameter will be decreased. This principle satisfies the basic denoising feature.
Table 2 demonstrates the effectiveness of this scheme.

Due to the ICPSM, our modified weighted non-local term — we refer to it
as PatchWMF, is much more robust to the noisy pixels. The boundary blurring
is reduced and the accuracy of the estimated flow field is modified.

4 Implementation

We follow the optimization framework of [5] to compute the flow field, more
importantly, some useful practices are used for further modification.

Edge-Preserving Smoothness. To preserve edges, we redefine the smoothness
term as [9]:

E(u,v)=
∑

i,j

ω(i, j)(ρS(‖∇u‖) + ρS(‖∇v‖)) (15)
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Fig. 1. Three color weight measures. From Left to Right: (a) Pixel measure. (b)
Patch measure. (c) Replicated patch measure (Color figure online).

the edge-preserving term ω(i, j) is a structure adaptive map which contains
motion discontinuity [9,10]:

ω(i, j) = exp(−‖∇I1‖k) (16)

where we set k = 0.8.

Large Displacements Handling. The traditional coarse-to-fine framework
is good at estimating large displacements of relatively large objects, however, it
performs poorly on fine scale structures with motions larger than their size. That
because fine scale structures may disappear in coarse scales, leading to no valid
matching information in the coarse level can be propagated to finer scale, hence,
these structures cannot be well recovered. To handle large displacements while
preserve motion details, similar as [10], we first use approximate nearest neighbor
fields (NNF) to compute an initial dense correspondence field. Furthermore,
we employ the SIFT feature detection and selection method of [9] to obtain some
reliable sparse matches. Then, we incorporate the dense NNF and the sparse
SIFT matches through the Quadratic Pseudo-Boolean Optimization (QPBO)
fusion method [20] to get an improved NNF. After that, during the coarse-to-
fine optimization, before the first warping step on each pyramid level, we fuse
the improved NNF and the coarser lever computed continuous flow field (u, v)
as flow initialization.

Occlusion Detection and Post-processing. Occlusion detection is a notori-
ously difficult problem, since displacement vectors for occluded pixels generally
cannot be determined due to the lack of correspondences. Current optical flow
models are not yet powerful enough to handle this problem, thus it is beneficial
to tackle occlusions in the post-processing. We employ the mapping uniqueness
criterion of [21] to detect occlusions, and the occlusion state is expressed as:

Occ(i, j) = min(
max(N(i + ui,j , j + vi,j) − 1, 0)

2
, 1) (17)
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where N(i+ui,j , j + vi,j) denotes the number of pixels in the reference image I1
that corresponds to a pixel located at (i+ui,j , j+vi,j) in the target image I2. We
regard the pixel as occluded pixel when Occ(i, j) ≥ 0.5. To remove these artifacts
while preserving the object boundaries, we apply the joint bilateral filter to fill
the detect occluded pixels.

For numerical calculation, we adopt the 3-stage Graduated Non-Convexity
(GNC) scheme and perform 5 warping steps on each pyramid level at GNC
stage 2. At other GNC stages, due to large motions require more warping iter-
ations [5], we perform 10 warping steps if the sequence is dominated by large
displacements, if not we perform 5 warping steps. Other implementation meth-
ods and optimization steps are same as [5]. All experiments are performed on
a Laptop with an Intel Core i5-2410M 2.30 GHz processor and 4 GB memory.
Regarding the running time, in our current CPU implementation, the whole
program takes 520 s to compute a high quality flow field for an image pair with
resolution 640480 in, for instance, the Urban sequence.

5 Experiments

In this section, we test our method, referred to as PatchWMF-OF, on three pub-
lic challenging optical flow benchmarks the Middlebury benchmark [3], the MIT
benchmark [24], and the MPI Sintel benchmark [23]. Both quantitative compari-
son in terms of two standard error measures the average angular error (AAE) and
the average endpoint error (EPE), and visual analysis compares with other related
techniques are performed.

5.1 Evaluation of PatchWMF Technique

We evaluate the proposed PatchWMF technique by testing whether the three
presented schemes that aim to improve the color similarity measure are effec-
tive, and by quantitatively comparing it with the baseline methods – WMF [5].
In particular, the PatchWMF technique is a combination of the RPColWMF
approach and the smoothing parameter selection (Eq. (14)) strategy. Table 1
shows the AAE and EPE results on 8 synthetic sequences from the Middle-
bury training set. The error statistics display that the three schemes are useful,
leading to the PatchWMF outperforms the WMF.

5.2 Evaluation of Noisy Pixels Handling

To further evaluate the noisy pixels handling ability of our PatchWMF tech-
nique, we synthesize the 8 training sequences from the Middlebury benchmark
by adding Gaussian noise with variance σn = [10, 20, 30] respectively. From
Table 2, we can see that the proposed PatchWMF performs much better than
the WMF. Comparing Table 2 with Table 1, it is clear that for a same sequence
but with different noise level, the motion estimation accuracy improvement
(i.e. AAE and EPE modification) obtained from our PatchWMF on the noisy
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Table 1. AAE/EPE of the eight training sequences from the Middlebury benchmark
with different color measures for the WMF

Method WMF(σC = 7) PColWMF(σPC = 7) RPColWMF(σPC = 7) PatchWMF

RubW. 2.351/0.073 2.253/0.071 2.429/0.074 2.400/0.072

Venus 3.327/0.237 3.421/0.243 3.363/0.238 3.227/0.232

Dime. 2.570/0.131 2.595/0.132 2.586/0.132 2.380/0.121

Hydra. 1.829/0.151 1.785/0.145 1.866/0.155 1.837/0.153

Urban2 2.082/0.221 2.095/0.227 2.073/0.218 2.054/0.221

Urban3 2.600/0.394 2.754/0.391 2.583/0.388 2.660/0.387

Grove2 1.498/0.104 1.601/0.112 1.509/0.104 1.433/0.099

Grove3 4.955/0.463 5.079/0.478 4.957/0.462 4.829/0.460

Avg. 2.652/0.222 2.700/0.225 2.670/0.221 2.600/0.218

Table 2. Comparison of the AAE and EPE of the Middlebury training sequences with
different added Gaussian noise level for the WMF/PatchWMF techniques

Method σn = 10 σn = 20 σn = 30

AAE EPE AAE EPE AAE EPE

RubW. 5.122/4.975 0.154/0.148 8.703/7.899 0.262/0.237 11.97/10.89 0.351/0.323

Venus 4.245/3.953 0.302/0.282 5.423/5.238 0.421/0.406 7.197/7.294 0.546/0.535

Dime. 2.819/2.615 0.140/0.131 4.574/4.251 0.229/0.214 7.183/7.122 0.347/0.340

Hydra. 2.379/2.299 0.214/0.208 3.482/3.202 0.328/0.303 4.299/3.984 0.423/0.390

Urban2 2.945/2.845 0.276/0.279 4.387/4.447 0.386/0.393 6.286/6.142 0.514/0.508

Urban3 3.778/3.817 0.475/0.480 5.325/5.387 0.637/0.630 7.971/7.965 0.872/0.870

Grove2 1.751/1.697 0.126/0.120 2.275/2.185 0.163/0.155 3.211/3.101 0.231/0.223

Grove3 5.521/5.520 0.525/0.521 6.243/6.249 0.608/0.610 7.333/7.295 0.688/0.698

Overall improve 2.95% 1.95% 3.85% 2.83% 3.00% 2.25%

Table 3. AAE/EPE of two noisy training sequences from the MIT benchmark [24]

Method Cameramotion Fish

AAE EPE AAE EPE

WMF 6.408 0.566 26.109 0.731

PatchWMF 6.285 0.550 25.064 0.692

Improve 2.0 % 2.8 % 4.0 % 5.4 %

part is much higher than on the clean part. For example, for the original Rub-
berWhale sequence (without adding noise), the AAE/EPE of the PatchWMF is
approximate to the AAE/EPE of the WMF; in contrast, for the noise added Rub-
berWhale sequences, the AAE/EPE of the PatchWMF is significantly decreased
compare to the corresponding AAE/EPE of the WMF. The AAE improvement
of σn = 20 and σn = 30 is about 3 %. The results well demonstrate the effective-
ness of our ICPSM, and making our PatchWMF is much more robust to against
noise than the WMF. Additionally, Figs. 2 and 3 show two visual comparison.
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Fig. 2. Visual comparison on the Gaussian noise added RubberWhale sequence [5].
From Top to Bottom: RubberWhale sequences, flow results of WMF, flow results of
PatchWMF. From Left to Right: flow with added Gaussian noise σn = 10, σn = 20,
σn = 30, and the ground truth flows.

Fig. 3. Visual comparison on the Gaussian noise added Grove2 sequence [5]. From
Top to Bottom: Grove2 sequences, flow results of WMF, flow results of PatchWMF.
From Left to Right: flow with added Gaussian noise σn = 10, σn = 20, σn = 30,
and the ground truth flows.

The motion boundaries of our flow fields are more accurately preserved. In con-
trast, due to the disturbance of the noisy pixels, the WMF fails to recover edges,
resulting in a lot of errors that are produced by motion blurring distribute at
edge regions.
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Fig. 4. Visual comparison on two heavy noisy real-world sequences from the MIT
benchmark [24]. From Top to Bottom: estimated flow fields of cameramotion, esti-
mated flow fields of fish. From Left to Right: estimated flow fields with WMF,
estimated flow fields with PatchWMF, and the ground truth flows.

Quantitative comparison (Table 3) and visual comparison (Fig. 4) of the
denoising results of the WMF and our PatchWMF according to two heavy noisy
sequences – cameramotion and fish are conducted. Table 3 reveals that our Patch-
WMF is superior to WMF to obtain more accurate motion field. In Fig. 4, since
the two sequences are fully filled with noisy pixels, the WMF is badly violated
and it performs poor on object boundaries. Contrastively, the presented ICPSM
helps the WMF robustly reject outliers, thus the motion blurring is reduced in
our estimated flow fields.

5.3 Results on MPI Sintel Benchmark

To evaluate the overall performance of our PatchWMF-OF method, we test it
on the challenging MPI Sintel benchmark [23]. This benchmark contains long
photo-realistic video sequences with extremely difficult cases, e.g., large motions,
specular reflections, motion blur, defocus blur, and atmospheric effects. The
evaluation is conducted on two kinds of frames, namely clean pass and final
pass. EPE all measures the EPE over all pixels, and s0–10 measures pixels with
a speed between 10 and 40 pixels (similarly for s10–40 and s40+). Tables 4 and 5
compare our method to state-of-the-art algorithms on the test set of the MPI
Sintel benchmark. At the time of submission, for EPE all, it is ranked 7th on the
clean pass and 11th on final pass; while for s0–10, it is ranked 1th on the clean
pass and 7th on final pass. More importantly, it outperforms current published
methods (the huge memory consumption of the DeepFlow [25] prevents itself
from practical applications, thus it should be rule out). The results illustrate
that our method performs topmost for both large and small displacement optical
flow estimation in a unified framework, especially for small motion (i.e. s0–10).
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Table 4. Clean pass results on the MPI Sintel test set

Method EPE all EPE s0–10

DeepFlow [25] 5.377 0.960

PatchWMF-OF 5.550 0.581

MDP-Flow2 [9] 5.837 0.640

EPPM 6.494 1.402

S2D-Matching 6.510 0.622

Classic+NLP [5] 6.731 0.638

MLDP-OF 7.297 0.600

LDOF 7.563 0.936

Table 5. Final pass results on the MPI Sintel test set

Method EPE all EPE s0–10

DeepFlow [25] 7.212 1.284

S2D-Matching 7.872 1.172

PatchWMF-OF 7.971 1.279

MLDP-OF 8.287 1.312

Classic+NLP [5] 8.291 1.208

EPPM 8.377 1.834

MDP-Flow2 [9] 8.445 1.420

LDOF 9.116 1.485

In contrast to the baseline method [5], our algorithm performs much better on
estimating large motions, which demonstrates our large displacements handling
scheme is effective and necessary. On the other side, our method also performs
better on small motion estimation. For the clean pass, the EPE of s0–10 is reduced
from 0.638 to 0.581, the improvement is about 10 %; for the final pass, the EPE of
s0–10 is changed from 1.208 to 1.279, nearly the same. Why our method performs
worse on the final pass than on the clean pass? Since the final pass is rendered with
motion blur, defocus blur and atmospheric effects while the clean pass are not, and
the motion blur and defocus blur do not affect the accuracy of the results too much
[26], thus the reason for degradation is due to the synthetic atmospheric effects,
not because of noisy pixels. This fact indicates that our ICPSM based WMF is
superior to the WMF [5] for rejecting noisy pixels, and outliers can be removed
more accurately. Figure 5 shows representative results of the final pass sequences.
It is easy to find that our method preserves edges and motion boundaries better
than other two related algorithms [5,9], and it also well captures both large and
small motions. In particular, comparing to [5], boundary blurring due to noisy
pixel perturbation is reduced.
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Fig. 5. Visual comparison on the final pass of the MPI Sintel test set. From Top
to Bottom: shaman1, ambush3, cave3, wall. From Left to Right: MDP-Flow2 [9],
Classic+NLP [5], PatchWMF-OF(Ours), ground truth flows.

6 Conclusion

This paper addresses the problem of flow field outliers removing depends on the
median filter. We present an improved color patch similarity measure to modify
the robustness of the WMF to noise. By using the patch difference to replace the
pixel difference, the violation due to the noisy pixels is reduced. Additionally,
to further improve the noise rejection performance of the patch scheme, a repli-
cated patch method is proposed. Moreover, we introduce an adaptive smoothing
parameter selection method to calculate the appropriate smoothing parameter
according to the noise degree of the input image. Experiments in this paper
have demonstrated that the improved color patch similarity measure is effective
to reduce the noise affection – the color difference between a noisy pixel and
its neighboring pixel may similar, but the color difference between a replicated
patch of a noisy pixel and a patch of its neighboring pixel cannot be similar,
leading to the improved WMF denoises intermediate flow fields more accurately.
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