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a b s t r a c t

The variational optical flow method is considered to be the standard method to calculate an accurate
dense motion field between successive frames. It assumes that the energy function has spatiotemporal
continuities and appearance motions are small. However, for real image sequences, the temporal con-
tinuity assumption is often violated due to outliers and occlusions, causing inaccurate flow vectors at
these regions. After each warping operation, errors are generated at the corresponding regions of the
warped interpolation image. This results in an inaccurate discrete approximation of the temporal deri-
vative and thus ends up affecting the accuracy of the estimated flow field. In this paper, we propose an
adaptive guided image filter to correct these errors in the warped interpolation image. A guidance image
is reconstructed by considering both the feature of the reference image as well as the difference between
the warped interpolation image and the reference image, to guide the filtering of the warped inter-
polation image. To adjust the smoothing degree, the regularization parameter in the guided image filter
is adaptively selected based on a confidence measure. Extensive experiments on different datasets and
comparison with state-of-the-art variational optical flow algorithms demonstrate the effectiveness of our
method.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Estimation of the apparent motion of a scene plays a funda-
mental role in computer vision and image processing. Currently,
one of the most successful techniques that addresses this problem
is the variational optical flow method [1,2], which formulates an
energy function by aggregating a data term and a smoothness
term. Minimizing the energy function can get the motion of each
pixel. Technically speaking, the minimization involves solving the
corresponding Euler–Lagrange equations of the energy function
numerically [3]. The calculated flow field is a dense field of dis-
placement vectors, which describes how corresponding pixels in
consecutive frames match. The direction and magnitude of each
flow vector indicate where and how far a pixel moved. This
property ensures the optical flow method is widely used in, for
example, object tracking [4] and segmentation [5], super-resolu-
tion reconstruction [6], and medical diagnostics [7].

The variational optical flow method proposed by Horn and
Schunck (HS) [8] is based on two assumptions: 1) the brightness
Informatics, Decision System

.Poppe@uu.nl (R. Poppe),
constancy assumption (BCA), which assumes that the brightness of
a pixel does not change along its motion trajectory over time; and
2) the smoothness assumption, which assumes that the flow field is
smooth and ensures the optical flow problem is well posed. In
practice, these two assumptions are rarely satisfied. Especially
under challenging conditions, such as outliers (e.g., image noise
and estimated flow errors [9]), large displacements, occlusions and
illumination changes, the performance of HS is notably worse [40].
Furthermore, the HS model is too slow to be implemented in real-
time as the large and sparse partial differential equations (PDEs) is
computationally expensive. Fortunately, in the past 30 years,
considerable progress has been achieved. The progress can be di-
vided into two classes: 1) different advanced concepts are in-
tegrated into the variational framework, to enable the methods to
preserve discontinuity [5,10,11], to handle large displacements
[1,2,20], to treat illumination changes [12,13], to be robust with
respect to outliers [9,15], and to tackle occlusions [9,16,17]; and 2)
efficient and advanced optimization schemes are presented to
target real-time use [3,18].

The popular variational algorithms are focused on how to im-
prove the data term (Eq. (1)) by incorporating new assumptions
[19], or to design advanced smoothness constraints that preserve
discontinuity. There are few literatures concern the basic feature of
the numerical computation, where the flow field is computed from
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the spatiotemporal derivatives of image intensities. Therefore, the
input images and the intermediate warped interpolation image
Iwarp (Iwarp refers to the warped interpolation image based on the
flow field calculated in the previous step, see Eq. (2)) are con-
strained to be continuous and differentiable in space-time. Si-
multaneously, the flow vector should be small and valid at every
pixel. Errors are typically produced in the intermediate flow fields
due to outliers and occlusions. Subsequently, Iwarp will contain
errors caused by these inaccurate flow vectors. Furthermore, the
spatiotemporal derivatives will be distorted. Consequently, the
accuracy of the final estimated flow field will be degraded. Cor-
recting errors of the intermediate flow fields and the Iwarp during
optimization is a good way to improve the performance of the
variational algorithms.

Till now, the majority of variational optical flow algorithms try
to reduce errors during the numerical computation, concentrating
on applying different filters to smooth the intermediate flow fields
to remove outliers or to correct flow errors by integrating useful
information [10,21].

Xiao et al. [17] proposed a multi-cue driven adaptive bilateral
filter (BF), which enables smoothing of the flow field with highly
desirable motion discontinuity preservation. The algorithm can
handle occlusions partially, but, BF is time consuming. Wedel et al.
[12] introduced a median filter (MF) to denoise the flow field, but
the MF over-smooths motion boundaries of the flow field. Sun
et al. [10] proposed a modified weighted median filter (WMF) to
prevent this kind of over-smoothing, but the weight is easily in-
fluenced by textured, noisy pixels and illumination changes. Re-
cently, Rashwan et al. [22] improved the weight by using the
saliency of image gradients to replace the intensity-based mea-
sure. Tu et al. [16] proposed a novel combined post-filtering (CPF)
method to efficiently remove outliers and handle occlusions
simultaneously.

Brox et al. [3] proposed a two nested fixed point iterations
based numerical scheme to combine with the coarse-to-fine
strategy to efficiently solve the variational methods. As pointed
out in [1,2], this method fails to recover many motion details.
Because some fine structures are smoothed out at coarse levels
and then “forgotten”, therefore, they cannot be correctly estimated
at final scale. Xu et al. [2] proposed an extended coarse-to-fine
(EC2F) refinement framework to reduce the reliance of flow esti-
mates on their initial values propagated from the coarse level. By
integrating available matching information into the continuous
flow at each scale, the lost motion of fine structures can be
recovered.

These methods only consider filtering the intermediate flow
fields or refining the initial flow vectors, they neglect to correct the
basic elements of the PDEs – the spatiotemporal derivatives.

The correctness of the temporal derivative It completely de-
pends on Iwarp, which means that Iwarp heavily influences the ac-
curacy of the estimated flow field. Currently, nearly all variational
methods (e.g. [10,12,22]) simply use the temporal derivative in the
numerical iteration. In contrast, we propose an adaptive guided
image filter (AGIF) to filer Iwarp before computing the temporal
derivative. The AGIF technique is especially useful to correct errors
of Iwarp which are caused by outliers and occlusions.

The guided image filter (GIF), which was proposed recently by
He et al. [23], smooths the input image by considering the content
of a guidance image that can be another image or the input image
itself. The GIF is similar to the joint bilateral filter (JBF) [24], which
is able to reduce noise while preserve edges. However, the JBF is
nonlinear and computationally complex. The computational time
of the JBF increases exponentially as the size of the filtering win-
dow increases. In contrast, the GIF is implemented as a sequence
of box filters, making it linear and efficient. More significantly, its
runtime is independent of the filtering window size. Due to these
advantages, the GIF is popular in denoising [23,25], sharpness
enhancement [26], optical flow computation [28] and stereo
matching [27,28]. For example, Xiao et al. [39] applied the GIF to
filter the three dimensional cost-volume to preserve edge in-
formation and improve operational efficiency. To treat with the
problem of flickering-artifacts that is caused by the incoherent
disparity maps, Liu et al. [41] proposed a novel temporal con-
sistency enhancement algorithm based on Guided Filter and
Temporal Gradient to smooth disparity sequences to improve the
consistency of the sequence.

In this work, we present an AGIF technique to smooth Iwarp to
improve the performance of the variational optical flow method.
To analyze the characteristic of the GIF as well as the relationship
between the reference image and Iwarp, we reconstruct a guidance
image which is a combination of both. The combination is based
on a confidence measure which originates from the temporal de-
rivative, as the temporal derivative can be interpreted as an in-
dication of mismatch. Due to this contribution, the filtered Iwarp

can gain useful information from the reference image. Except the
general edges, we can correct some intensities which are distorted
due to outliers and occlusions of the before filtered Iwarp. Another
contribution is that, we propose a method to select the optimal
regularization parameter ɛ (Eq. (18)) adaptively based on two
principles – the error degree of Iwarp and the size of the input
testing images. This method effectively improves the smoothing
ability of the GIF.

The paper is organized as follows. Section 2 describes a fun-
damental CPF method and the numerical optimization process. In
Section 3, we propose an AGIF technique to correct errors of the
warped interpolation image. Experiments are presented in Section
4. Finally, discussion and conclusions are given in Section 5.
2. Variational optical flow model and minimization

2.1. The combined Post-filtering (CPF) method

Let I1, I2: (Ω ⊂ R2) be the two consecutive frames at time t and
tþ1. x¼(x, y, t)T denotes the locations of pixels in the spatial image
domain Ω, and w¼(u, v)T is the flow field describes the dis-
placement in x-and y-direction between I1 and I2. The common
assumption of flow estimation is the brightness constancy as-
sumption (BCA). Based on the BCA, a data term is formed:

∫( ) = ( + ) − ( ) ( )Ω
E dw I x w I x x 1D 2 1

2

where

= ( + ) ( )I I x w 2warp 2

is a warped interpolation image with certain interpolation method
such as, cubic interpolation, bilinear interpolation [15], or bicubic
interpolation [12].

The two unknowns (u, v) be determined from one single Eq.
(1). To solve this aperture problem, a global smoothness assump-
tion has been introduced, where a smoothness term can be ex-
pressed as [8]:

∫( ) = ∇ + ∇ ( )Ω
E dw u v x 3S

2 2

By integrating the smoothness term Eq. (3) into Eq. (1), and by
using a parameter λ to steer the relative importance of the two
terms, the optical flow estimation can be formulated as an energy
minimization problem in which the energy function is:
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( )∫ λ( ) = ( + ) − ( ) + ∇ + ∇

( )
Ω      

E dw I x w I x u v x

4

2 1

Data term

2 2 2

Smoothness term

This energy function performs poorly when outliers and oc-
clusions occur. A variety of robust penalties [9,10,29] were pre-
sented to improve the performance. Recently, Sun et al. [10]
pointed out that the L1-norm approximate generalized Charbon-
nier penalty [30] performs best among them. A generalized
Charbonnier penalty based TV-L1 optical flow energy function is
defined as:

( ) ( )∫ Ψ λΨ( ) = ( + ) − ( ) + ∇ + ∇

( )
Ω      

E dw I x w I x u v x

5

D 2 1
2

Data term

S
2 2

Smoothness term

where ΨD¼ΨS¼Ψ ς( ) = ( + )αs s2 2 2 (α¼0.45), and ς is a small para-
meter to make sure the energy function differentiable (ς¼0.001).

The accuracy can be improved when a MF is applied to smooth
the intermediate flow fields during optimization. In contrast to
[10], which only applied a WMF for denoising, we adopt a more
advanced ClassicþCPF method [16] for smoothing. The CPF
method is a combined filtering technique, which uses a WMF, a BF
and a fast MF to post-smooth the detected edges, occlusions, and
the flat regions of the flow field respectively. The CPF based TV-L1
optical flow energy function is expressed as:
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where λ and λ2 are the weight parameters that control the balance
of each term. ux y, and vx y, are the elements of u and v respectively.
u and v are the auxiliary flow fields of u and v, and approximate u
and v. Nx,y represents the neighborhood of pixel (x, y). The second
and the third terms are weighted non-local terms, which conduct
a WMF smoothing and a BF smoothing within a specified region of
(u, v) respectively. ′ ′wx y x y, , ,E E E E

is the weight of WMF, which is cal-

culated according to Eq. (9) in [10], and ′ ′wx y xO y, , ,O O O
is the weight of

BF, which is calculated by using Eq. (3) in [16]. The fourth term
conducts a fast median filter (refer to Eq. (2) in [16] for detailed
information).

Different from [16], we use the faster Sobel detector to extract
the flow field edges, and set standard deviations of the occlusion
state function in weights ′ ′wx y x y, , ,E E E E

and ′ ′wx y x y, , ,O O O O
to σd¼0.75 and
Table 1
Results (AAE/EPE) of RubberWhale, Venus and Urban3 from the Middlebury dataset wi

(σd,σe) (0.30, 20) (0.30, 10)

RubberWhale 2.240/0.070 2.200/0.070
Venus 3.070/0.223 3.023/0.222
Urban3 2.569/0.370 2.459/0.359
Average 2.626/0.221 2.556/0.218
σe¼10. (Table 1 shows the influence of σd and σe).
2.2. Minimization

To optimize Eq. (6), we apply an alternating optimization
strategy [10] combined with a coarse-to-fine warping scheme [3].
In each pyramid level, at every warping step, two operations are
implemented: a well-known fixed point iteration scheme is em-
ployed to solve Eq. (5) to get the flow field (u, v), and a CPF method
is applied to (u, v) to remove outliers.

The fixed point iteration scheme is one of the most successful
techniques to solve a large system of PDEs. According to the cal-
culus of variations, a minimizer of Eq. (5) must fulfill the Euler–
Lagrange equations:

( )
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At each pyramid level l ( ≥l 1), the flow field is updated ac-
cording to ( ) = ( + + )+ + d du v u u v v, ,l l l l l l1 1 , where ( )u v,l l is a
known part from coarse levels and ( )d du v,l l is an unknown update
part that needs to be computed:
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where k is the inner iteration step. To solve the equations, the
nonlinear terms of the form ( + )+I x wl

2
1 ( +wl 1¼ ( )+ +u v,l l1 1 ) need to

be linearized via Taylor expansion:
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The incremental flow (dul,k, dvl,k) is solved by the inner fixed
point iteration and is refined to (dul,kþ1, dvl,kþ1) iteratively. Ac-
cording to the fixed point iteration scheme, a linear system of PDEs
about the unknown incremental flow (dul,kþ1, dvl,kþ1) is formed:
th different σd and σe.

(0.5, 10) (0.75, 15) (0.75, 10)

2.181/0.069 2.205/0.070 2.163/0.069
3.025/0.220 3.053/0.223 3.025/0.221
2.460/0.359 2.572/0.366 2.453/0.353
2.555/0.217 2.610/0.220 2.548/0.215
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We set dul,0¼dvl,0¼0 for initialization at each pyramid level l.
Ix
l k, , Iy

l k, and It
l k, are the intermediate spatio-temporal derivatives.

They are usually computed as follows: 1) for the spatial derivatives
Ix
l k, and Iy

l k, , we first calculate the x-and y-direction spatial deriva-

tives of I2 with 5-point derivative filter 1
12
[�1, 8, 0,�8, 1], and then

warp the spatial derivatives to I1 with the current estimated flow
field with respect to the bicubic interpolation [12]; 2) for the
temporal derivative It

l k, , it is a difference between the warped in-
terpolation image Iwarp and the reference image I1. After com-
puting the spatial and temporal derivatives, the classic successive
over-relaxation (SOR) method [31] is used to solve Eq. (12) to
obtain (dul,kþ1, dvl,kþ1).

At the second step, the CPF method is applied to smooth the
newly updated flow field (ulþdul,kþ1, vlþdvl,kþ1), which can ef-
ficiently reduce outliers as well as handle occlusions properly.

One significant problem during the numerical calculation is
how to process the spatial and temporal derivativesIx

l k, , Iy
l k, and It

l k, .
Since the intermediate flow field (ul,k, vl,k) is derived directly from
the spatiotemporal derivatives, Ix

l k, , Iy
l k, and It

l k, play a crucial role to
determine the accuracy of the final flow field. More importantly,
these derivatives all depend on the warping interpolation. There-
fore, the final flow field is dependent on the warped interpolation
results. Wedel et al. [12] proposed a blended derivative approach
to modify the warped spatial derivatives Ix

k and Iy
k . However, to our

knowledge, no paper is available to handle the temporal derivative
It
k. As It¼Iwarp – I1(x), the Iwarp must be appropriately tackled. In
the next section, we present an AGIF technique to correct errors of
Iwarp to improve the accuracy of the optical flow estimation.
3. Adaptive guided image filter

Due to the fact that some of the displacement vectors in the
intermediate flow field are not accurate, or even completely
wrong, their corresponding warped interpolation pixels are not
correct. For example, optical flow is undefined at occlusions be-
cause of unreliable intensity matching. Therefore, the warped in-
terpolation pixels that come from the undefined flow vectors are
wrong. Furthermore, outliers cause incorrect flow vectors and in-
troduce artifacts to Iwarp. In this section, an AGIF technique is
presented to correct these kinds of errors of Iwarp. Table 3 de-
monstrates the effectiveness of the proposed AGIF technique.

Recently, GIF was proposed [23] as a high performance image
filtering method to effectively reduce noise and preserves edges.
Additionally, it performs very fast. Applying the GIF to Iwarp with a
guidance image G, the output F at a pixel i (x, y) is defined as a
weighted average:

( ) ( )∑=
∑

( )
( )∈ ∈

jF
W G

W G I
1

13
i

j w i j j w
i j

,
, warp

k k

where j is the index of pixel (x′, y′), wk is the kernel window
centered at pixel k, and the kernel weights function Wi,j(G) can be
expressed as:

( )( )( ) ∑
( )

μ μ

σ
= +

− −

+ ϵ ( )∈

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟w

W G
G G1

1
14

i j
k i j w

i k j k

k
, 2

: ,
2

k

where μk and σk
2 are the mean and variance of the guidance image

G in a local window wk, and w is the number of pixels in wk (refer
to [23] for more details).
From Eq. (13) we can see that the filtering weights depend on
the guidance image G. Locally (in a local windowwk), the output F
obtains approximate details of G. Globally, the output F is similar
to G. According to this characteristic, we select the reference image
I1 as the guidance image G. The GIF will transfer valid information
from I1 to Iwarp during the filtering, which is very useful to correct
imperfect details of Iwarp. Some classical techniques to handle
occlusions in optical flow estimation in term of label out the oc-
cluded pixels and exclude them from the data term [21] or apply
diffusion approaches to approximate the occluded flow vectors
with their neighbors [32]. In contrast, we correct matching errors
due to occlusions or outliers with the application of the GIF – the
unreliable intensity matching between Iwarp and I1 will be reduced
and remedied as the un-occluded useful information in I1 is pro-
pagated to Iwarp.

However, the G only considers the difference between pixel i
and its neighbors so the error-correction capacity of the traditional
GIF is limited. In addition, although we hope Iwarp should be as
similar to I1 as possible – less interpolation error implies a more
accurate estimated flow field [29], Iwarp must not be equal to I1. If
Iwarp equals I1, implying that It is 0, no valid flow vectors can be
computed. Based on this significant feature, we should not simply
consider the reference image I1 but also require to consider Iwarp

for filtering.
Recently, Ham et al. [35] stated that jointly leveraging struc-

tural information of guidance image and input image, rather than
unilaterally transferring structures of guidance image to the out-
put image, is more effective for denoising. Inspired by the blended
technique of [12], which uses the spatial derivatives ∇I1 and the
warped spatial derivatives Ix and Iy to construct a blended version
of derivatives (Ix, Iy)¼(1– β) ⋅(Ix, Iy)þ β ⋅(I1x, I1y), we blend I1 and
Iwarp to reconstruct a new guidance image G, which takes into
account of the properties of both I1 and Iwarp iteratively:

( )= + – ( )G W I W I1 15IG warp IG 1

where WIG is a weight to control the relative importance between
I1 and Iwarp for reconstruction.

The temporal derivative It is a good error measure to evaluate
the deviation. It is widely used for checking whether the com-
puted flow satisfies the initial model constraints, indicating oc-
clusions [17] and evaluating performances of the optical flow al-
gorithms [29]. In this paper, we use it to compute WIG:
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For one pixel, if the deviation is small, its corresponding esti-
mated flow vector is accurate, thus, large weight is given to Iwarp

for construction. If the deviation is large, its corresponding esti-
mated flow vector is inaccurate and the interpolation pixel needs
to be corrected. Consequently, large weight is given to I1 for con-
struction. To keep Iwarp as the majority in GIF, we threshold WIG at
each pixel i:
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In general, the WIG should be constrained to [0.6 0.95]. Its ac-
tual value is not very significant as we are only interested in
keeping Iwarp as the primary part in the reconstructed guidance
image G. In this paper, we select 0.8 as the threshold experimen-
tally. In Fig. 1, we use the Urban3 sequence to illustrate the effect of
the proposed GIF method. The threshold weight (Fig. 1(b)) reflects
the sequence features better than the un-threshold weight (Fig. 1
(a)). For example, the occlusion status is clearly displayed in Fig. 1
(b). By applying the threshold, at occlusions and edges, the Iwarp as



Fig. 1. Illustration of the proposed GIF method by using of Urban3 (at the last warping step). (a) The weight WIG without a threshold. (b) The weight WIG with threshold 0.8.
(c) The RMS comparison of Iwarp before and after the application of our GIF. (d) Iwarp before the application of our GIF method. (e) Iwarp after the application of our GIF
method.
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the primary component is integrated into G and guides the fil-
tering. In contrast, without the threshold, at some occlusions and
edges, I1 is selected as a primary component for constructing the
guidance image. However, this deviates the truth since at these
regions the structures of Iwarp and I1 are quite different. With the
application of our proposed GIF, the occluded error pixels in Iwarp

are partly remedied, as shown in Fig. 1(e). It can be also demon-
strated in Fig. 1(c) that after using our GIF, the root-mean-square
(RMS) error of Iwarp is reduced. Fig. 2 displays the benefits of re-
construction a new guidance image G and threshold the weight
WIG.

The regularization parameter ɛ of the GIF controls the
smoothing degree. The larger ɛ is, the smoother the filtered image
will be [23]. According to some classical literatures and various
experiments, we find that the optimal parameter ɛ is related to the
Fig. 2. Results (at the last warping step) of Urban3. (a) The filtered Iwarp in term of guid
Iwarp in term of the reconstructed guidance image G without threshold WIG. (d) The filter
strategies.
deviation of It as well as the size of input images: the larger It, the
larger ɛ should be set. The smaller size of the input images, the ɛ
should be also set larger. Based on this observation, an AGIF is
proposed to adaptively select the optimal parameter ɛ.
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ErrR is an error confidence [33], it represents the degree of
error pixels in Iwarp, and is computed as follows:

= ( ) ( )ErrR ErrN/ H.W 19
ance image I1. (b) The filtered Iwarp in term of guidance image Iwarp. (c) The filtered
ed Iwarp in term of G with threshold WIG. (e) The AAE and EPE of the 4 different GIF



Table 2
AAE/EPE results of four training sequences from the Middlebury dataset and the
UCL dataset v1.2.

Venus YoesmiteSun Mayan1 Mayan2

GIF 3.206/0.230 2.691/0.150 2.460/0.909 1.391/0.238
AGIF(NoSize) 3.161/0.228 2.705/0.151 2.447/0.911 1.403/0.233
AGIF 3.028/0.221 2.484/0.132 2.398/0.895 1.400/0.229
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ErrN is the number of error pixels in Iwarp, and H and W are the
height and width of Iwarp respectively. Bruhn and Weickert [33]
pointed out that at locations where the deviation is small, the
computed flow is accurate. At locations where the deviation is
large, the optical flow model assumptions are violated severely.
According to this statement, we consider one pixel to be erroneous
if WIG(i)o0.8.

ER is an error confidence [29,36], which represents the RMS of
It, and it is given by:

( )( )= ( )ER round RMS I /10 20t

where round is the mathematical round operation. The RMS of It is
the basic and widely measure to evaluate the performance of
variational optical flow algorithms without knowing the ground
truth [29,36]. In theory, the worse the flow field is, the larger the
RMS(It) becomes, and the better the flow field is, the smaller the
RMS(It) gets. This is because the more accurate of the estimated
flow field (u, v), the better match that can be achieved between
the two frames, and the smaller of the RMS(It) will be.

NR is a measure of the size of the input images. If the ratios of
noise in two different sized images are the same, from visual, the
small sized image appears more noisy. From the mathematical
side, their probability to capture noise is different. It is much easier
to get noise in the small size image. In other words, the small size
image looks like noisier. Hence, for the smaller image, the para-
meter ɛ should be set larger. In this paper, we select the resolution
640 ⋅480 as a fixed divide for all the experiments [37]. NR is
computed:

= ( ( )– ) ( )H WNR max 0, round 640.480/ / 1 21

This strategy can adaptively select a proper parameter ɛ to
improve the smoothing. As shown in Fig. 3, noise at smooth areas
are reduced with the adaptive ɛ selection strategy, and the motion
boundary over-smoothing problem is also reduced. Furthermore,
in Table 2, we test the influence of the proposed size fact NR
quantitatively. By comparing the results of AGIF (NoSize) i.e. de-
leting the NR from ɛ, with AGIF of the 4 small size sequences, we
can find that with the contribution of the proposed size fact NR,
the estimation accuracy is increased (Table 3).
4. Implementation and experimental results

4.1. Implementation

To be robust against illumination changes, we preprocess the
input images by applying the Rudin–Osher–Fatemi (ROF) [26]
based structure-texture decomposition [12]. The incremental
coarse-to-fine technique in combination with the fixed pointed
iteration scheme is used to estimate the optical flow. In the outer
Fig. 3. Comparison of the estimated flow fields on the Venus sequence (from Middlebu
flow fields of Venus with the GIF and the AGIF respectively. (c, d) Estimated flow fields
loop of the optimization, a graduated nonconvexity (GNC) strategy
is used [34], which linearly combines a quadratic penalty function
with a generalized Charbonnier penalty function [10]: γE ¼(1– γ)
EQ(u, v)þ γEC(u, v). According to [10,38], we implement 3 GNC
steps with γ¼{0, 0.5, 1}. In building the pyramid, we use a
downsampling factor of 2/3 (see Table 4), and the number of
pyramid levels is adaptively determined with a constraint that the
coarsest level has a height or width around 20–30 pixels. Referring
the source code of the WLIF-Flow method [38] for more detail,
which is available at: www.projects.science.uu.nl/opticalflow/
WLIF-Flow/.

At each warping step, we apply the CPF method [16] to denoise
the intermediate flow field: a 7�7 WMF is used to smooth the
Sobel detected edge regions, a 9�9 BF is used to smooth the oc-
cluded regions and a 5�5 fast MF is used to smooth other flat
regions. Look Fig. 4 to overview the proposed method. All the
experiments have been executed on a PC with an Intel Core i5-
2410M 2.30 GHz processor and 4 GB memory, and the pixel values
of the experimental images are in the range [0, 255].

4.2. Experimental results

This paper focuses on using an AGIF technique to smooth Iwarp

to correct errors that may be caused by outliers and occlusions
during numerical iterations. For a quantitative measurement, we
first test our method on eight training sequences from the Mid-
dlebury dataset [29]. Table 5 shows the average angular error
(AAE) and the average end-point error (EPE) of four methods: the
proposed method, referred to as AGIFþOF, the relevant method
GIFþOF (i.e. without adaptive ɛ selection strategy), the ClassicþNL
method [10] and the ClassicþCPF method [16]. The four methods
have similar frameworks – the same data term and the smooth-
ness term, and the similar non-local smoothing strategies. Com-
paring our AGIFþOF method to both the ClassicþNL method and
the ClassicþCPF, we can find that with the application of the AGIF
technique, the accuracy of the estimated flow field is improved.
Especially for some complex sequences, such as RubberWhale,
Venus and Urban3 (contain an amount of outliers and occlusions),
the AAE and EPE of our method is much lower than other two
methods. Additionally, Table 5 compares the performance of the
GIF technique with the AGIF technique. Clearly, our AGIF
ry dataset) and the YoesmiteSun sequence (from UCL dataset v1.2). (a, b) Estimated
of YoesmiteSun with the GIF and the AGIF respectively.

http://www.projects.science.uu.nl/opticalflow/WLIF-Flow/
http://www.projects.science.uu.nl/opticalflow/WLIF-Flow/


Table 3
AAE/EPE results of eight training sequences from the Middlebury dataset without the CPF and GNC operations.

Urban2 Urban3 Grove2 Grove3 RubberWhale Venus Dimetrodon Hydrangea

None 2.208/0.278 5.311/0.609 1.825/0.133 7.974/0.842 3.057/0.097 5.459/0.331 2.589/0.133 1.888/0.172
GIF 2.210/0.279 5.260/0.603 1.806/0.126 7.956/0.832 3.027/0.096 5.457/0.328 2.579/0.131 1.883/0.171
AGIF (With) 2.190/0.270 5.252/0.600 1.801/0.121 7.901/0.833 3.012/0.096 5.417/0.328 2.563/0.132 1.892/0.169
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outperforms GIF, which demonstrates our strategy to adaptively
select a proper ɛ is beneficial for improving smoothing. Table 5
shows the RMS errors of Iwarp before AGIF and after AGIF at the
final warping step of the last iteration. After using the AGIF, some
errors in Iwarp were corrected. Besides, in the whole coarse-to-fine
and iteration procedure, the GIF will be implemented many times,
and the accumulated difference is large. Therefore, the preciseness
of the temporal derivative It is improved and the final optical flow
accuracy can be largely improved. It can be further demonstrated
in Table 6, where we compare the GIF with our AGIF in terms of
the training sequences from the MPI-Sintel dataset (using frame 10
and frame 11 for testing). The AAE/EPE results of our AGIF are
more accurate than the results of GIF. Fig. 5 shows the AGIF
technique has the correction ability from a visual aspect. By
comparing the corresponding flow fields of each sequence, espe-
cially at occlusions and discontinuities (red rectangle highlighted
regions), we find that errors are reduced with the application of
our AGIF technique. Like the Urban3, the occlusion caused errors,
are clearly seen in Fig. 5(f)–(h), while they are effectively remedied
in Fig. 5(i).

Furthermore, we test our method on some sequences from the
MIT dataset (available at http://people.csail.mit.edu/celiu/motio
nAnnotation/) and the UCL dataset (available at http://visual.cs.ucl.
ac.uk/ pubs/flowConfidence/supp/indx.html). Table 7 shows the
AAE and EPE of three methods: our AGIFþOF method, the Clas-
sicþNL [10] and the ClassicþCPF [16]. Both the lowest AAE and
EPE of our method verify the validity of the proposed AGIF tech-
nique. For some sequences, such as Robot, the improvement even
reaches to 50%. Fig. 6 shows the visual flow fields of sequences fish,
Cameramotion, Crates2 and drop1Txtr1 with respect to these three
methods. For the fish sequence, we can see a large number of noise
and outliers that are distributed in the fields of the ClassicþNL and
the ClassicþCPF algorithms, in contrast, the noise and outliers are
greatly reduced in our flow field. Besides, the motion parts of the
four fishes are clearly estimated. For the Cameramotion sequence,
the errors caused by occlusion around the rear-vision mirror re-
gion are corrected. For others: Crates2 and drop1Txtr1, our AGIF
technique also has high-performance. One remarkable discovery is
that for all the four tested sequences, outliers are smoothed out,
occluded parts are adequately recovered, and boundaries are well
preserved.

We evaluate our AGIFþOF method on the Middlebury bench-
mark. Fig. 7 shows that both the AAE and the EPE rank 15th at the
time of submission, and the average normalized interpolation er-
ror (ANIE) is more accurate than some methods which only have a
good performance on the AAE and EPE. Most importantly, we can
see that our method outperforms nearly all the TV-L1 non-local
(NL) approaches, such as the Efficient-NL algorithm, the Clas-
sicþNL algorithm, the NL-TV-NCC algorithm and the Occlusion-
Table 4
AAE/EPE results of eight training sequences from the Middlebury dataset with different

Urban2 Urban3 Grove2 Grove3

Factor¼1/2 1.889/0.213 2.512/0.387 1.306/0.092 4.953/0.4
Factor¼4/5 1.894/0.211 3.211/0.457 1.307/0.092 4.454/0.4
Factor¼2/3 1.825/0.204 2.465/0.357 1.272/0.090 4.373/0.43
TV-L1 algorithm (refer to the Middlebury testing website for more
details). Moreover, our AGIF technique is beneficial for all Euler–
Lagrange based variational algorithms which apply both the GNC
method and the warping strategy. Table 8 shows the performance
of the classical HS [8] method and the BA [9] method is sig-
nificantly improved when our AGIF is used.

We also evaluate our AGIFþOF method on the new MPI-Sintel
[14] dataset. From Table 9, we can see that our method is much
better than the ClassicþNL [10] method. More importantly, on the
clean testing part, our AGIFþOF method outperforms the MDP-
Flow2 method [2], which is the topmost algorithm on the Mid-
dlebury testing. The MDP-Flow2 method has similar idea as us,
which focuses on reducing initial flow errors and preserving mo-
tion details during the coarse-to-fine refinement framework. The
result demonstrates that correcting errors of Iwarp during optimi-
zation with our AGIF technique is valid and useful.

Fig. 8 shows three examples from the Middlebury real se-
quences Backyard, Basketball, and MiniCooper. We can find that the
proposed AGIFþOF method is effective to handle some complex
real conditions (comparing the red rectangle labeled regions of the
flow fields of three methods). For the Backyard, because of the
occlusion, the motion of the right foot of the little boy, the right leg
and left foot of the oldest girl, and the right leg of the little girl
who is hold, is lost or is wrong in Fig. 8(a) and (b). In contrast, the
motion of these parts is recovered in Fig. 8(c). For the Basketball, as
shown in Fig. 8(f), the motion of the arms and hands of the right
person is correctly estimated, and his profile is clearly recovered
that we can easily discern his hair, noise and mouth. The motion of
the basketball and its corresponding shadow are also correctly
computed. However, the estimated flow vectors of these parts
contain some serious errors with the other two methods [10,16].
For example, the motion of the shadow of the basketball is con-
fused with the background in Fig. 8(d), while some detailed mo-
tion information of the profile of the right person is over-
smoothed in Fig. 8(e). For the MiniCooper, it is hard to capture the
motion of the head and arms of the man due to noise and occlu-
sion. Therefore, some important motion of these parts are un-
recovered in Fig. 8(g) and (h). Fig. 8(i) shows that these problems
are properly tackled with the AGIF technique: the motion
boundary is sharp enough to distinguish the man and the outline
of the window of the trunk is clearly reflected. To be specific, the
motion of the forehead and the right arm is lost in Fig. 8(g) and (h),
while is correctly estimated in Fig. 8(i).

Fig. 9 shows the results of the challenging Football sequence.
For the Football sequence, errors are easily generated at regions of
the player's right foot and hand, as well as the football. Comparing
Fig. 9(c) with (d), we can find that although the state-of-the-art
MDP-Flow2 method [2] can recover the motion at these regions,
the motion information, especially the motion boundaries, is very
downsampling factors.

RubberWhale Venus Dimetrodon Hydrangea

81 2.231/0.071 3.073/0.223 2.468/0.127 1.887/0.159
49 2.226/0.070 3.002/0.220 2.472/0.127 1.887/0.158
7 2.166/0.069 3.028/0.221 2.429/0.125 1.861/0.155

http://people.csail.mit.edu/celiu/motionAnnotation/
http://people.csail.mit.edu/celiu/motionAnnotation/
http://visual.cs.ucl.ac.uk/pubs/flowConfidence/supp/indx.html
http://visual.cs.ucl.ac.uk/pubs/flowConfidence/supp/indx.html


Fig. 4. Method overview.

Table 5
AAE/EPE results of eight training sequences from the Middlebury dataset and the RMS error of Iwarp of the proposed AGIFþOF method.

Urban2 Urban3 Grove2 Grove3 RubberWhale Venus Dimetrodon Hydrangea

ClassicþNL [3] 2.011/0.211 2.862/0.413 1.413/0.098 4.833/0.458 2.327/0.072 3.256/0.232 2.476/0.127 1.816/0.151
ClassicþCPF [13] 1.866/0.203 2.604/0.402 1.323/0.092 4.686/0.456 2.285/0.071 3.181/0.229 2.491/0.127 1.856/0.154
GIFþOF 1.896/0.219 2.438/0.384 1.319/0.092 4.920/0.476 2.231/0.071 3.206/0.230 2.468/0.127 1.880/0.157
AGIFþOF 1.825/0.204 2.465/0.357 1.272/0.090 4.373/0.437 2.166/0.069 3.028/0.221 2.429/0.125 1.861/0.155

RMS RMS RMS RMS RMS RMS RMS RMS
Iwarp (Before AGIF) 17.2176 24.9190 17.1546 25.4570 9.6728 17.2574 8.9276 15.4837
Iwarp (After AGIF) 16.6114 24.2727 15.8344 23.8594 9.1588 16.2729 8.5278 14.5161

Table 6
AAE/EPE results of the training sequences (both clean pass and final pass) from the MPI-Sintel dataset.

Clean alley_2 ambush_2 bamboo_2 cave_2 market_2 shaman_2 sleeping_2 temple_2

GIFþOF 2.266/0.208 13.409/7.088 5.175/0.518 3.029/0.922 6.056/1.048 4.363/0.317 1.295/0.060 4.000/0.707
AGIFþOF 2.131/0.205 13.379/7.075 5.138/0.501 3.020/0.913 5.906/1.035 4.258/0.301 1.273/0.052 3.904/0.675
Final
GIFþOF 2.242/0.171 47.840/28.817 5.503/0.598 3.321/1.188 7.864/1.359 4.965/0.337 1.336/0.062 7.552/1.329
AGIFþOF 2.223/0.168 47.705/28.798 5.493/0.584 3.211/1.152 7.797/1.332 4.895/0.318 1.321/0.051 7.413/1.293
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dim (see Fig. 9(d)). For example, the motion boundaries of the
right fingers of the player is smoothened too much to discern, and
also the motion boundary of the football is not distinctive. In
contrast, our AGIFþOF method (see Fig. 9(c)) corrects these de-
fects. The motion boundaries of the fingers are well preserved. The
outline of the football is very clear. Additionally, we can even
distinguish the right shoe of the player. All in all, from the well
preserved motion boundaries of our flow field, we can see that our
AGIF technique is good at correcting motion errors.

In the last experiment, we select the KITTI complex outdoor se-
quences dataset for testing (Available at http://www.cvlibs.net/data
sets/kitti/eval_stereo_flow.php?benchmark¼flow). As shown in Fig. 10
(a) and (c), our AGIFþOFmethod correctly estimates the motion fields
of them. In Fig. 10(a), the motion of the car, and the motion of the trees
at the right side are distinctive. In Fig. 10(c), the motions of the two
cars, the rider and even his shadow, and the backgrounds (e.g. houses
and the mountain-like building) are all clearly recovered. The warped
images, as shown in Fig. 10(b) and (d), are also correct.
5. Discussion and conclusions

This paper proposed an effective AGIF technique to improve the
performance of the variational optical flow method. It corrects

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow


Fig. 5. Visual comparison of the estimated flow fields on sequences Venus and Urban3 (each row, from left to right). (a, f) Estimated flow fields of the ClassicþNL[10]; (b, g)
Estimated flow fields of the ClassicþCPF[16]; (c, h) Estimated flow fields without using the proposed AGIF technique. (d, i) Estimated flow fields with using the proposed
AGIF technique. (e, j) Corresponding ground-truths.

Table 7
AAE/EPE results of training sequences from the MIT dataset and the UCL dataset.

Fish Cameramotion Table Crates2 Robot Brickbox1t1 blow1Txtr1 drop1Txtr1

ClassicþNL 20.574/0.837 6.819/0.592 4.032/1.197 16.614/10.301 9.276/1.534 0.657/0.225 0.528/0.026 1.329/0.050
ClassicþCPF 15.306/0.627 5.785/0.533 3.750/1.140 16.458/10.390 8.898/1.514 0.618/0.237 0.428/0.023 1.010/0.041
AGIFþOF 12.325/0.505 5.220/0.499 3.618/1.237 13.156/2.421 4.064/0.886 0.525/0.190 0.407/0.020 0.898/0.036
Improvement 19.48%/19.46% 9.77%/6.38% 3.52%/8.51% 20.06%/76.7%% 54.33%/41.48%% 15.05%/30.4% 4.91%/13.04% 11.09%/12.2%

Fig. 6. Visual comparison of the estimated flow fields on sequences fish, Cameramotion, Crates2 and drop1Txtr1 (each row, from left to right). (a), (d), (g) and (j) Estimated
flow fields of the method ClassicþNL[10]. (b), (e), (h) and (k) Estimated flow fields of the method ClassicþCPF[16]. (c), (f), (i) and (l) Estimated flow fields of the proposed
method AGIFþOF.
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Fig. 7. Evaluation results on the Middlebury dataset. The proposed method AGIFþOF is highlighted. (a) The AAE. (b) The EPE. (c) The ANIE.

Table 8
AAE/EPE results of eight training sequences from the Middlebury dataset of methods: HS [1] and HSþAGIF, BA [2] and BAþAGIF.

Urban2 Urban3 Grove2 Grove3 RubberWhale Venus Dimetrodon Hydrangea

HS 4.060/0.459 7.520/0.856 2.853/0.204 6.809/0.690 3.798/0.118 5.533/0.337 4.675/0.224 2.218/0.190
HSþAGIF 2.999/0.282 5.749/0.668 1.975/0.143 5.638/0.550 3.026/0.096 3.621/0.245 4.363/0.208 2.047/0.174
BA 2.965/0.376 4.728/0.605 2.492/0.172 6.496/0.660 3.156/0.097 4.752/0.293 4.110/0.199 2.060/0.177
BAþAGIF 1.909/0.225 3.529/0.472 1.484/0.105 5.346/0.519 2.171/0.067 3.135/0.220 3.060/0.154 1.926/0.164

Table 9
Evaluation results on the MPI-Sintel test set.

AGIFþOF MDP-Flow2 [2] ClassicþNL [10]

EPE (clean) 5.766 5.837 7.961
EPE (final) 8.514 8.445 9.153
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errors which are caused by inaccurate flow vectors in the warped
interpolation image Iwarp. This technique is especially suited to
reduce errors due to outliers and occlusions. With this contribu-
tion, the accuracy of the discrete approximate temporal derivative
It is modified. Consequently, this technique is useful for all Euler–
Lagrange based variational methods. The AGIF technique is based
on the GIF method but with two improvements. One improvement
is that, we reconstruct a guidance image by properly combining
the reference image I1 and Iwarp according to a temporal derivative
measured error weight. As have shown, useful information (e.g.,
intensity and edge) will transferred from the reference image to
the filtered Iwarp. The other improvement is that, we use an error
confidence to adaptively select the optimal regularization para-
meter ɛ, which can properly adjust the degree of smoothing. In this
work, we did not find a sufficient way to use the GIF method to



Fig. 8. Visual comparison of the estimated flow fields on sequences Backyard, Basketball, and MiniCooper (each row, from left to right) from Middlebury dataset. (a), (d) and
(g) Estimated flow fields of the method ClassicþNL. (b), (e) and (h) Estimated flow fields of the method ClassicþCPF. (c), (f) and (i) Estimated flow fields of the proposed
method AGIFþOF.

Fig. 9. Visual comparison of the proposed AGIFþOF method and the MDP-Flow2 method [2] on the Football sequence. (a) Frame 3. (b) Frame 4. (c) The result of the
AGIFþOF method. (d) The result the MDP-Flow2 method.
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improve the accuracy of the spatial derivatives Ix and Iy, which will
be a challenge for future work.

5.1. Limitations

There are several limitations of the AGIFþOF method. First, as
shown in Tables 5 and 6, the improvement of AGIF over GIF is
modest, because former is based on the latter and both have the
same filtering process. Moreover, the approach to adaptively se-
lecting the optimal regularization parameter ɛ is according to
various experiments, we do not find a proper mathematical se-
lection measure (Eq. (18)) which causes the selection measure to
still suboptimal. In Table 5, we can see that the AGIF method is not
better than the GIF method with respect to the Urban3.
Second, the method to combine I1 and Iwarp to reconstruct a
guidance image G for AGIF cannot handle all variations. For different
sequences, the error degree of Iwarp is totally different. Even for one
sequence, the error degree between different areas may have large
differences. Creating a more appropriate combined approach is very
important. Furthermore, splitting the reference image I1 into differ-
ent parts, capturing useful information and discarding invalid in-
formation should be done, but an effective way to do this has yet to
be found. The results of the MPI-Sintel test set demonstrate the ur-
gency of this important work: for the clean pass and the final pass,
our method has different performances – better than MDP-Flow2 [2]
in the clean pass while worse than MDP-Flow2 in the final pass. This
is because the two passes have different complexities.



Fig. 10. Results of the proposed AGIFþOF method on real sequences 0000053 and 0000163 from the KITTI dataset. (a) The estimated flow field of the sequence 0000053.
(b) The corresponding backward warped image of the sequence 0000053. (c) The estimated flow field of the sequence 0000163. (b) The corresponding backward warped
image of the sequence 0000163.
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