

MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose Estimation in Video

Jinlu Zhang¹ Zhigang Tu¹ Jianyu Yang² Yujin Chen³ Junsong Yuan⁴

¹Wuhan University ²Soochow University ³Technical University of Munich ⁴State University of New York at Buffalo

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Introduction of 3D Human Pose Estimation

Definition

 3D human pose estimation from monocular observations is a fundamental vision task that reconstructs 3D body joint locations from the input images or video.

Challenge

- Depth Ambiguity
- Temporal Consistency
- 2D Input Uncertainty
- Occlusion

.

Learning better spatio-temporal correlation is very important to address these challenges

Input: 2D Pose Sequence

Output: Root-Relative 3D coordinates

y

Related Works of 3D Pose Estimation in Video

- 1. Seq2seq methods based on LSTM/RNN can not parallel over the time.
- 2. Most of them lack the global modeling ability on **long sequences.**

Spatio-Temporal correlation modeling is insufficient and low-efficiency

- 1. Seq2frame methods ignore the **temporal motion** among body joints;
- 2. Most SOTA methods increase the **redundant calculation**.

[1] K. Lee et al. Propagating LSTM: 3D Pose Estimation based on Joint Interdependency, 2018, ECCV[2] Pavllo et al. 3D human pose estimation in video with temporal convolutions and semi-supervised training, 2019, CVPR

Recent Works of Transformer in 3D Pose Estimation

1. Jitter results in video input.

2. Single frame performance is still **not good enough**.

- 1. Much **redundant computation** during training and inference.
- 2. Poor performance **under seq2seq setting**, even transformer is a sequential model.

Zheng et al. 3d human pose estimation with spatial and temporal transformers, 2021, ICCV

Recent Works of Transformer in 3D Pose Estimation

- 1. Jitter results in video input.
- 2. Single frame performance is still **not good enough**.

Why not try to utilize **transformer** to the **seq2seq paradigm** to obtain high efficiency and good performance?

- 1. Much **redundant computation** during training and inference.
- 2. Poor performance **under seq2seq setting**, even transformer is a sequential model.

Zheng et al. 3d human pose estimation with spatial and temporal transformers, 2021, ICC

Challenges

- How to design a model to obtain better spatio-temporal modeling ability?
- How to take advantage of global correlations between sequences in video?

Our Motivation

Each joint has different motion in a video sequence

Our Method

1. Joint Separation

We separate different joints in time dimension, so that the trajectory of each joint is an individual token, and different joints of body are modeled paralleled.

2. Alternating Design

We stack spatial and temporal encoders for d_l loops, and the dimension of feature is preserved as a fixed size d_m to promise that spatial-temporal correlation learning focuses on the same joint.

Our Method — MixSTE

(Mixed Spatial-Temporal Encoder)

Main Experimental Results

Comparison results under Protocol 1 (MPJPE) on Human3.6M using detectors

Protocol #1		Dir.	Disc.	Eat	Greet	Phone	Photo	Pose	Pur.	Sit	SitD.	Smoke	Wait	WalkD.	Walk	WalkT.	Avg.
Pavlakos <i>et al.</i> [35]	CVPR2018	48.5	54.4	54.4	52.0	59.4	65.3	49.9	52.9	65.8	71.1	56.6	52.9	60.9	44.7	47.8	56.2
Pavllo <i>et al.</i> [37](CPN, <i>T</i> =243)(†)	CVPR2019	45.2	46.7	43.3	45.6	48.1	55.1	44.6	44.3	57.3	65.8	47.1	44.0	49.0	32.8	33.9	46.8
Cai <i>et al.</i> [1](CPN, <i>T</i> =7)(†)	ICCV2019	44.6	47.4	45.6	48.8	50.8	59.0	47.2	43.9	57.9	61.9	49.7	46.6	51.3	37.1	39.4	48.8
Yeh <i>et al.</i> [51](†)	NIPS2019	44.8	46.1	43.3	46.4	49.0	55.2	44.6	44.0	58.3	62.7	47.1	43.9	48.6	32.7	33.3	46.7
Liu et al. [28](CPN, T=243)(†)	CVPR2020	41.8	44.8	41.1	44.9	47.4	54.1	43.4	42.2	56.2	63.6	45.3	43.5	45.3	31.3	32.2	45.1
Wang <i>et al.</i> [46](CPN, <i>T</i> =96)(†)	ECCV2020	40.2	42.5	42.6	41.1	46.7	56.7	41.4	42.3	56.2	60.4	46.3	42.2	46.2	31.7	31.0	44.5
Chen <i>et al.</i> [4](CPN, <i>T</i> =243)(†)	TCSVT2021	41.4	43.5	40.1	42.9	46.6	51.9	41.7	42.3	53.9	60.2	45.4	41.7	46.0	31.5	32.7	44.1
Xu <i>et al.</i> [48](<i>T</i> =1)	CVPR2021	45.2	49.9	47.5	50.9	54.9	66.1	48.5	46.3	59.7	71.5	51.4	48.6	53.9	39.9	44.1	51.9
Lin <i>et al.</i> $[25](T=1)(*)$	CVPR2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	54.0
Zeng <i>et al.</i> [53](†)	ICCV2021	43.1	50.4	43.9	45.3	46.1	57.0	46.3	47.6	56.3	61.5	47.7	47.4	53.5	35.4	37.3	47.9
Zheng et al. [57](CPN, T=81)(†)(*)	ICCV2021	41.5	44.8	39.8	42.5	46.5	51.6	42.1	42.0	53.3	60.7	45.5	43.3	46.1	31.8	32.2	44.3
Ours(CPN, $T=81$)(†)(*)		39.8	43.0	38.6	40.1	43.4	50.6	40.6	41.4	52.2	56.7	43.8	40.8	43.9	29.4	30.3	42.4
Ours(CPN, $T=243$)(†)(*)		37.6	40.9	37.3	39.7	42.3	49.9	40.1	39.8	51.7	55.0	42.1	39.8	41.0	27.9	27.9	40.9
Wang <i>et al.</i> [46](HRNet, <i>T</i> =96)(†)	ECCV2020	38.2	41.0	45.9	39.7	41.4	51.4	41.6	41.4	52.0	57.4	41.8	44.4	41.6	33.1	30.0	42.6
Wehrbein et al. [47](HRNet, T=200)) ICCV2021	38.5	42.5	39.9	41.7	46.5	51.6	39.9	40.8	49.5	56.8	45.3	46.4	46.8	37.8	40.4	44.3
Ours(HRNet, $T=243$)		36.7	39.0	36.5	39.4	40.2	44.9	39.8	36.9	47.9	54.8	39.6	37.8	39.3	29.7	<u>30.6</u>	39.8

Comparison results under Protocol 1 (MPJPE) on Human3.6M using 2D ground truth

Protocol #1		Dir.	Disc.	Eat	Greet	Phone	Photo	Pose	Pur.	Sit	SitD.	Smoke	Wait	WalkD.	Walk	WalkT.	Avg.
Liu <i>et al.</i> [28](<i>T</i> =243)(†) CV	PR2020	34.5	37.1	33.6	34.2	32.9	37.1	39.6	35.8	40.7	41.4	33.0	33.8	33.0	26.6	26.9	34.7
Wang <i>et al.</i> [46](GT, <i>T</i> =96) ECG	CV2020	23.0	25.7	22.8	22.6	24.1	30.6	24.9	24.5	31.1	35.0	25.6	24.3	25.1	19.8	18.4	25.6
Zheng <i>et al.</i> $[57](T = 81)(\dagger)(\ast)ICC$	CV2021	30.0	33.6	29.9	31.0	30.2	33.3	34.8	31.4	37.8	38.6	31.7	31.5	29.0	23.3	23.1	31.3
Ours(T=81)		25.6	27.8	24.5	25.7	24.9	29.9	28.6	27.4	29.9	29.0	26.1	25.0	25.2	18.7	19.9	25.9
Ours(T=243)		21.6	22.0	20.4	21.0	20.8	24.3	24.7	21.9	26.9	24.9	21.2	21.5	20.8	14.7	15.7	21.6

MixSTE as a seq2seq method first outperforms the seq2frame methods!

Main Experimental Results

Method		PCK↑	AUC↑	MPJPE↓
Mehta <i>et al</i> . [28]	ACM TOG 2017	79.4	41.6	-
Lin <i>et al.</i> [20](<i>T</i> =25)	BMVC2019	83.6	51.4	79.8
Li et al. [18]	CVPR2020	81.2	46.1	99.7
Wang <i>et al</i> . [41](<i>T</i> =96	6)ECCV2020	86.9	62.1	68.1
Chen et al. [4](T=243) TCSVT2021	87.8	53.8	79.1
Gong <i>et al.</i> [8]	CVPR2021	88.6	57.3	73.0
Zheng et al. [50]	ICCV2021	88.6	56.4	77.1
Ours(T=1)		94.2	63.8	<u>57.9</u>
Ours(T=27)		94.4	66.5	54.9

Comparison on MPI-INF-3DHP with 2D GT

Table 3. Detailed quantitative comparison results on MPI-INF-3DHP with three metrics. The \uparrow indicates the higher, the better, the \downarrow indicates the lower, the better. The best and second-best results are highlighted in bold and underlined formats, respectively.

Comparison on HumanEva-I with 2D GT

#Protocol1		Walk			Jog		Avg.
Pavllo <i>et al.</i> [32](<i>T</i> =81)	13.1	10.1	39.8	20.7	13.9	15.6	18.9
Pavllo <i>et al.</i> [32](<i>T</i> =81, FT)	14.0	12.5	27.1	20.3	17.9	17.5	18.2
Zheng <i>et al.</i> [50](<i>T</i> =43)	16.3	11	47.1	25	15.2	15.1	21.6
Zheng <i>et al.</i> [50](<i>T</i> =43, FT)	14.4	10.2	46.6	22.7	13.4	13.4	20.1
Ours(T=43)	20.3	22.4	34.8	27.3	32.1	34.3	28.5
Ours(T=43, FT)	12.7	10.9	17.6	22.6	12.8	13.0	13.0

Table 4. The MPJPE on HumanEva testset under Protocol 1. FT indicates using the pretrained model on Human3.6M for finetuning. The best result is highlighted in bold.

H36M SOTA Leaderboard 3DHP SOTA Leaderboard

Qualitative Results Presentation

Input

Thank you for watching!

HomePage: jinluzhang.site

Email: jinluzhang@whu.edu.cn

Code: https://github.com/JinluZhang1126/MixSTE

Code Link

HomePage